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Outline of the mini-course

1. Notions of statistical inference

2. Basics of quantum state estimation

3. The 8 (14) ions experiment

4. The quantum Cramér-Rao theory

Quantum Statistics

5. Local asymptotic normality for i.i.d. quantum states

System identification for quantum Markov processes



What this course does not cover (but is worth knowing)

I Bayesian methods

I Covariant estimation methods

I Channel/phase estimation

I Compressed sensing

I Quantum Homodyne Tomography

I Quantum Metrology

I Quantum cloning, teleportation benchmarks, learning ...
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1. Notions of statistical inference

I Statistical models

I Parametric estimation

I Fisher Information

I Cramér-Rao bound

I Efficient estimators

I Repeated coin toss example

I Local asymptotic normality

I Confidence intervals and Bootstrap

I Hypothesis testing



What is statistical inference?

Given random data X drawn from an unknown distribution, one aims to make
an ‘educated guess’ about some property of the underlying distribution

Example

I Density estimation: given X1, . . . ,Xn independent identically distributed
(i.i.d.) with unknown density p ∈ L1([0, 1]), estimate the value of p(x) for
some x ∈ [0, 1]

I Hypothesis testing: given X drawn from either P0 or P1 decide from which
of the two distributions it comes

I Sufficient statistic: can data X ∼ Pθ be ‘summarised’ into a ‘simpler’
statistics f (X ) without losing information about θ ?

I Identifiability: Is the map θ 7→ Pθ one-to-one ?

I Optimality: how do we compare the performance of estimators and which
are the optimal ones?

I Asymptotics: what happens in the limit of ‘large number of data’?



Statistical models

Definition
Let Θ be a parameter space. A statistical model over Θ is a family
{Pθ : θ ∈ Θ} of probability distributions on a measure space (X ,Σ).

Example

I Repeated coin toss: X1, . . . ,Xn i.i.d. with Pθ([Xi = 1]) = θ and
Pθ([Xi = 0]) = 1− θ, with θ ∈ Θ := [0, 1]. The joint distribution is:

Pn
θ([X1 = x1, . . . ,Xn = xn]) =

n∏
i=1

Pθ([Xi = xi ]) = θ
∑

i xi · (1− θ)n−
∑

i xi

I Gaussian shift on Rk : family of Gaussian distributions N(θ,V ) with
unknown mean θ ∈ Rk and known k × k covariance matrix V

I Tomography: an unknown probability density p over R2 is probed through
its marginals along random directions φ in plane. For each φ we get data
X ∼ R[p](x |φ) where R[p] is the Radon transform

R[p](x |φ) =

∫
p(x cosφ+ t sinφ, x sinφ− t cosφ)dt
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Parametric estimation

Problem
Given

I a subset Θ of Rk

I data X ∼ Pθ with θ ∈ Θ and Pθ probability distribution on (X ,Σ)

I a loss function W : Θ×Θ→ R+, e.g. W (θ̂, θ) = ‖θ − θ̂‖2

devise an estimator θ̂ = θ̂(X ) such that the risk

R(θ̂, θ) := Eθ(W (θ̂, θ)) =

∫
X

W (θ̂(x), θ)Pθ(dx)

is small.

Remark

I The same problem can be formulated for ‘non-parametric’ Θ, and/or
estimation of a function t = t(θ)

I In general the estimator may be randomised, for example
I θ̂ = θ̂(X ,U) where U is an additional random variable with fixed, known

distribution
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Unbiased estimators

Bias-variance trade-off (exercise)

Let {Pθ : θ ∈ Θ ⊂ Rk} be a parametric statistical model and let X ∼ Pθ.
The mean square error of θ̂(X ) is the sum of a variance and a bias term

Eθ((θ̂ − θ)2) =

∫
(θ̂(x)− θ)2Pθ(dx) =∫
(θ̂(x)− Eθ(θ̂))2Pθ(dx) + (θ − Eθ(θ̂))2 = V (θ̂) + B(θ̂)2

Definition
Let {Pθ : θ ∈ Θ ⊂ Rk} be a parametric statistical model and let X ∼ Pθ.
An estimator θ̂(X ) is called unbiased if Eθ(θ̂(X )) = θ for all θ.
If θ̂ is unbiased then the mean square error is equal to V (θ̂).

Example

I Let X1, . . . ,Xn be i.i.d. Bernoulli with Pθ([X = 1]) = θ and
Pθ([X = 0]) = 1− θ. Then X̄ = (

∑
Xi )/n is an unbiased estimator of θ

I Let Y1, . . . ,Yn be i.i.d. normal distributed with Pθ = N(θ,V ). Then
Ȳ = (

∑
Yi )/n is an unbiased estimator of θ
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Fisher information matrix

Let {Pθ : θ ∈ Θ ⊂ Rk} be a parametric statistical model with Pθ probability
measures on (X ,Σ) dominated by µ, i.e. µ(A) = 0⇒ Pθ(A) = 0 for all θ.

Smooth model
Throughout we will assume that the probability densities pθ = dPθ

dµ
satisfy

sufficient ‘regularity conditions’ allowing for differentiation w.r.t. θ and
exchangeability of integral and derivative.

Definition
Let `θ := log pθ be the log likelihood and let ˙̀

θ,i := ∂`θ/∂θi be the score
function(s).

The Fisher information matrix is defined by

Ii,j(θ) := Eθ( ˙̀
θ,i

˙̀
θ,j) =

∫
supp(pθ)

p−1
θ (x)

∂pθ
∂θi

(x)
∂pθ
∂θj

(x)µ(dx)

where supp(pθ) = {x : pθ(x) > 0}.
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The Cramer-Rao bound

Theorem (Cramér-Rao)

Let θ̂ be an unbiased estimator of θ. Then the following matrix inequality holds

Eθ((θ̂ − θ)T (θ̂ − θ)) = Var(θ̂) ≥ I (θ)−1

where I (θ) is the Fisher information matrix.

Proof.
Let θ be one dimensional. The general case is left as exercise.
By Cauchy-Schwarz

Var(θ̂) · I (θ) = Eθ((θ̂ − θ)2) · Eθ( ˙̀2
θ) ≥

∣∣∣Eθ((θ̂ − θ) ˙̀
θ)
∣∣∣2

The right side is

Eθ((θ̂ − θ) ˙̀
θ) = Eθ(θ̂ ˙̀

θ)− θEθ( ˙̀
θ) =

=

∫
θ̂(x)

dpθ
dθ

(x)µ(dx)− θ
∫

dpθ
dθ

(x)µ(dx) =

=
d

dθ

∫
θ̂(x)pθ(x)µ(dx)− θ d

dθ

∫
pθ(x)µ(dx) =

d

dθ
Eθ(θ̂) = 1
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Properties of the Fisher information matrix

I I (θ) is a positive definite real k × k matrix

I I (θ) is additive for products of independent models (exercise):

if Pθ = P(1)
θ × P(2)

θ then I (θ) = I (1)(θ) + I (2)(θ)

I The Hellinger distance between infinitesimally close densities pθ and pθ+dθ

is determined by the Fisher information

h(pθ, pθ+dθ)2 =

∫
(
√

pθ(x)−
√

pθ+dθ(x))2µ(dx) =
1

4
I (θ)(dθ)2 + o((dθ)2)

I The Fisher information matrix defines a riemannian metric on Θ and the
corresponding geodesic distance is the Bhattacharya distance

d(pθ1 , pθ2 ) = 2 arccos

(∫ √
pθ1 (x)

√
pθ2 (x)µ(dx)

)
I Let qθ be the probability density of a randomisation Y of X (randomised

statistic, Markov kernel) where X ∼ Pθ. Then

d(qθ1 , qθ2 ) ≤ d(pθ1 , pθ2 ) and h(qθ1 , qθ2 ) ≤ h(pθ1 , pθ2 )

I I (θ) is the unique metric contracting under all randomisations
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Remarks on the Cramér-Rao bound

I One can similarly define unbiased estimators ĝ of g(θ) for a function
g : Θ→ Rp. The Cramér-Rao bound in this case is

Var(ĝ) ≥ J(θ)I (θ)−1J(θ)T

where J(θ)l,i = ∂g(θ)l/∂θi is the p × k Jacobian matrix (exercise).

I For certain models there exist no unbiased estimators, e.g. the binomial
distribution b(θ, n) and function g(θ) = θ−1 (exercise).

I Even if unbiased estimators exist, their variance may be too big.

I The Cramér-Rao bound is in general not attainable, but it becomes
equality if and only if the distributions form an exponential family:

ĝ is an unbiased estimator of g(θ) which attains CR iff

d log pθ(x)

dθ
= a(θ)(ĝ(x)− g(θ))
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ĝ is an unbiased estimator of g(θ) which attains CR iff

d log pθ(x)

dθ
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Asymptotic efficiency

The theory of asymptotic efficiency shows that the Cramér-Rao bound is
asymptotically attained in the following sense.

Definition
Let {Pθ : θ ∈ Θ ⊂ Rk} be a parametric statistical model. Let X1, . . . ,Xn be
i.i.d. with distribution Pθ. An estimator θ̂n = θ̂n(X1, . . . ,Xn) is called
asymptotically efficient if

√
n(θ̂n − θ)

L−→ N(0, I (θ)−1)

In particular, θ̂n attains the CR bound asymptotically:

nEθ
[
(θ̂n − θ)T (θ̂n − θ)

]
→ I (θ)−1.

Theorem
Under regularity conditions, the maximum likelihood estimator

θ̂n(X1, . . . ,Xn) = arg max
τ

n∏
i=1

pτ (Xi ) = arg max
τ

n∑
i=1

`τ (Xi )

is asymptotically efficient.
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Maximum likelihood is asymptotically efficient: ideas of the proof

Log likelihood: `n(θ) = `θ,n(X1, . . .Xn) =
∑n

i=1 `θ(Xi )

1. Let θ0 be the true parameter. If `n(θ) is twice differentiable around θ0 then

I Consistency: θ̂n → θ0 with probability one

I ˙̀n(θ̂n) = 0 since θ̂n is maximum likelihood

2. By Taylor expansion there is a θ∗n between θ0 and θ̂n such that

− ˙̀n(θ0) = ˙̀n(θ̂n)− ˙̀n(θ0) = (θ̂n − θ0)῭n(θ∗n )

from which

θ̂n − θ0 = −
˙̀n(θ0)

῭n(θ∗n )
so √

nI (θ0)
(
θ̂n − θ0

)
=

˙̀n(θ0)√
nI (θ0)

·
῭n(θ0)

῭n(θ∗n )
·
(
−

῭n(θ0)

nI (θ0)

)−1

3. The right side converges in distribution to N(0, 1) since

I by C. L. T.: ˙̀n(θ0)/
√

nI (θ0)
L→ N(0, 1) using Eθ0

( ˙̀2
θ0

) = I (θ0)

I by L. L. N. the third term converges to 1 since Eθ0
(῭
θ0

) = −I (θ0)

I the middle term converges to one by using consistency of θ̂n



Exercise: Maximum likelihood for Gaussian models

Let P(x,y) := N((x , y),V ) be Gaussian model with unknown mean (x , y) ∈ R2

and known, (non-degenerate) covariace matrix V .

1. Let (X ,Y ) ∼ P(x,y). Show that the Fisher information is I = V−1 and the
maximum likelihood estimator of (x , y) is (x̂ , ŷ) = (X ,Y ), and achieves the
Cramer-Rao bound. In particular

E(x̂ − x)2 = V11 = (I−1)11

2. Consider that y is known, e.g. y = 0 and we would like to estimate x from
(X ,Y ) ∼ P(x,0). Find the maximum likelihood estimator x̃ and show that

E(x̃ − x)2 = (I11)−1 ≤ (I−1)11



Example: linear regression and least squares

Problem (Linear regression)
estimate the unknown vector x = (x1, . . . , xk) ∈ Rk given observations

Yi =
∑
j

Aijxj + εi

with known Aij and i.i.d εi ∼ N(0, σ2).

Least squares: Find x̂ which minimises∑
i

|Yi −
∑
j

Aij x̂j |2 = (Y − AX̂)T (Y − AX̂)

Explicit solution coinciding with maximum likelihood estimator

X̂ = (ATA)−1ATY

Covariance matrix of X̂

Var(X̂) = σ2(ATA)−1
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Example: repeated coin toss

Let Pθ be the Bernoulli distribution: Pθ([X = 1]) = θ and Pθ([X = 0]) = 1− θ.
Let X1, . . . ,Xn be i.i.d. with distribution Pθ. Then

I X̄n := (
∑n

i=1 Xi )/n is an unbiased estimator of θ. Indeed

Eθ(X̄n) = E(X ) = Pθ([X = 0]) · 0 + Pθ([X = 1]) · 1 = θ

I The variance of X̄n is Var(X̄n) = Var(X )/n and

Var(X ) = Pθ([X = 0]) · (0− Eθ(X ))2 + Pθ([X = 1]) · (1− Eθ(X ))2

= θ(1− θ)2 + (1− θ)(0− θ)2 = θ(1− θ)

I The Fisher information is

I (θ) = Eθ[ ˙̀2
θ] = θ−1 + (1− θ)−1 = 1/(θ(1− θ))

Thus X̄n attains the Cramér-Rao bound.
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Example: repeated coin toss

By the Central Limit Theorem we have

√
n(X̄n − θ) =

1√
n

n∑
i=1

(Xi − θ)
L−→ N(0,Var(X )) = N(0, θ(1− θ))

Thus X̄n is asymptotically efficient.

The maximum likelihood estimator is θ̂n = X̄n! Indeed

dpθ
dθ

(X1, . . . ,Xn) =
d

dθ

n∏
i=1

θ
∑

i Xi (1−θ)n−
∑

i Xi =

(∑
i Xi

θ
−

n −
∑

i Xi

1− θ

)
pθ = 0

has solution θ̂n = X̄n.
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Local asymptotic normality for coin toss

The random variable X̄n ∈ {0, 1/n, . . . , n/n} has binomial distribution Bin(n, θ)

Pθ[X̄n = k/n] =

(
n

k

)
θk(1− θ)n−k

The CLT says that the (centred and rescaled) binomial is approximated by the
normal N(0, θ(1− θ)) with variance depending on θ.

A closer look shows that a Gaussian with a fixed variance is a good fit for the
binomial for a whole interval of parameters θ of size n−1/2
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Local asymptotic normality for coin toss

The random variable X̄n ∈ {0, 1/n, . . . , n/n} has binomial distribution Bin(n, θ)
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Local asymptotic normality for coin toss

Consider θ in a n−1/2 neighbourhood of a fixed point θ0 such that
θ = θ0 + u/

√
n for some local parameter u.

Let ûn be unbiased estimator of u obtained by centering and rescaling X̄n

ûn :=
√

n(X̄n − θ0)

Lemma
For any local parameter u the convergence in distribution holds

ûn
L−→ N(u, θ0(1− θ0))

Proof: (exercise)

Hint: by Lévy’s Theorem it suffices to prove convergence of characteristic
functions:

Eθ0+u/
√
n (exp(itûn))→ exp(itu) · exp(−t2θ0(1− θ0)/2).

Since ûn is a sum of i.i.d. variables the left side is[
Eθ0+u/

√
n

(
exp(it(X − θ0)/

√
n)
)]n

=

(
1− θ0(1− θ0)t2/2 + itu

n
+ o(n−3/2)

)n

.



Local asymptotic normality for coin toss

Consider θ in a n−1/2 neighbourhood of a fixed point θ0 such that
θ = θ0 + u/

√
n for some local parameter u.
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Local asymptotic normality for coin toss

Summarising the previous two slides, we showed that asymptotically with n, the
estimator ûn of the local parameter u converges in distribution to a normal with
mean u and fixed variance I (θ0)−1.

Since ûn is a sufficient statistic for the data (X1, . . . ,Xn) this means that the
original i.i.d. model converges (locally) to a simple Gaussian shift model

{Pn
θ0+u/

√
n : u ∈ R} −→ {N(u, I (θ0)−1) : u ∈ R}.

This phenomenon is called local asymptotic normality and holds (with an
appropriate definition of convergence) for arbitrary ‘smooth’ statistical models
{Pθ : θ ∈ Rk}. The theory of convergence of statistical models is a classical
topic in asymptotic statistics, which can be used to find asymptotically optimal
estimators and estimation rates, by transforming complicated models into
simpler Gaussian ones.

Later on we will use this idea as our guiding principle in finding asymptotically
optimal procedures for quantum state estimation.
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Confidence intervals

Definition
Let X ∼ Pθ with θ ∈ Θ ⊂ R.

An interval I(X ) = [L(X ),U(X )] is called confidence interval of level 1− α if

Pθ(L(X ) ≤ θ ≤ U(X )) = 1− α, ∀θ

Remark

I Similar definition holds for confidence intervals for χ when
θ = (χ, ψ) ∈ R× Rk−1

I There exists a general procedure for constructing confidence intervals from
tests for hypotheses of the type H0 = {θ = θ0} and H1 = {θ 6= θ0}, and
vice-versa

I In general it is difficult to construct exact confidence intervals and
approximate intervals are used instead Pθ(L(X ) ≤ θ ≤ U(X )) ≈ 1− α



Confidence intervals (exercise)

Given X1, . . .Xn i.i.d. with N(µ, σ2), show that

I the sample mean X n =
∑

Xi/n satisfies

√
n(X n − µ) ∼ N(0, σ2)

I the sample variance s2
n =

∑
(Xi − X n)2/(n − 1) satisfies

(n − 1)s2
n/σ

2 ∼ χ2
n−1

where χ2
n−1 is the chi-square with (n-1) degrees of freedom, i.e. the distribution

of
∑n−1

j=1 Y 2
j with Yi ∼ N(0, 1) independent

I X n and s2
n are independent

I from the above follows that

Tn :=

√
n(X n − µ)

sn
∼ tn−1 (∗)

with tn−1 denoting the student-t distribution.

I If c is taken such that P(|Tn| > c) = α then (∗) implies

Pµ,σ
(
X̄n −

csn√
n
≤ µ ≤ X̄n −

csn√
n

)
= 1− α

which provides a level α confidence interval for µ.



(Approximate) confidence intervals from asymptotic efficiency

Let X1, . . . ,Xn be independent with Xi ∼ Pθ and θ ∈ Θ ⊂ R.

Recall that the maximum likelihood estimator θ̂n is asymptotically efficient√
nI (θ)(θ̂n − θ)

L→ N(0, 1)

From this we get that if c is such that P(|Y | > c) = α for Y ∼ N(0, 1) then

Pθ

θ̂n − c√
nI (θ̂n)

≤ θ ≤ θ̂n +
c√

nI (θ̂n)

 ≈ 1− α.

Remark
There are arguments for replacing the Fisher information nI (θ̂n) with the
observed Fisher information jn(θ̂n) where

jn(θ) :=
n∑

i=1

῭
n(θ) =

n∑
i=1

d2

dθ2
log pθ(Xi )

Exercise: If Xi ∼ Bernoulli(θ), show that

In(θ̂n) = jn(θ̂n) =
n

θ̂n(1− θ̂n)
⇐ problematic for p(1− p) ≈ 0!



Confidence intervals by bootstrap

Bootstrap methods can be used to (approximately) sample from the
distribution of an estimator or compute confidence intervals.

In parametric bootstrap we assume Xi ∼ Pθ with θ ∈ Θ ⊂ Rk as opposed to
arbitrary distribution. The general procedure has the following steps:

1. Construct maximum likelihood estimator θ̂n from the data X1, . . . ,Xn

2. Generate new i.i.d. datasets X̃(j) = (X̃
(j)
1 , . . . , X̃

(j)
n ) with j = 1, . . .m and

X̃
(j)
i ∼ Pθ̂n , ∀i , j

3. Compute the ml estimator θ̃
(j)
n for each dataset X̃(j)

4. Construct confidence intervals from the empirical distribution of the ml
estimators.



Hypothesis testing

Problem
Let {P0,P1} be a binary statistical model over (X ,Σ). Given X ∼ Pi decide
which of the two hypotheses is true, P0 or P1. A test is a function
t : Ω→ {0, 1} and it’s ‘goodness’ is measured in terms of the error
probabilities

I type I error P0([t(X ) = 1])

I type II error P1([t(X ) = 0])

Let p0 and p1 be the densities of P0 and P1 with respect to a measure µ.

I The likelihood ratio statistic LR : Ω→ R is defined as

LR(x) =
p1(x)

p0(x)

and is a sufficient statistic for the model {P0,P1}
Exercise: prove this for two binomials Bin(n, θ0) and Bin(n, θ1).

I The likelihood ratio test tk is defined by

tk(ω) :=

{
0 if p0(x)/p1(ω) > k
1 if p0(x)/p1(ω) ≤ k
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Optimal tests

Let {P0,P1} be a binary statistical model over (X ,Σ) and let p0 and p1 be the
densities of P0 and P1 w.r.t. a probability measure µ.

Lemma (Neyman-Pearson lemma)

Let α ∈ (0, 1) be a fixed level. Then there exist a constant k such that the
likelihood ratio test tk is of level α (i.e. P0([t(X ) = 1]) = α) and minimises the
type II error P1([t(X ) = 0]) among the α-level tests.

Lemma (optimal Bayes test)

Let π0, π1 be a (non-degenerate) prior distribution. Then the likelihood ratio
test

t(ω) :=

{
0 if p0(ω)/p1(ω) > π1/π0

1 if p0(ω)/p1(ω) ≤ π1/π0

has minimal average error

Pe
π := π0P0([t(X ) = 1]) + π1P1([t(X ) = 0]) =

1

2
(1− ‖π1p1 − π0p0‖1)
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has minimal average error

Pe
π := π0P0([t(X ) = 1]) + π1P1([t(X ) = 0]) =

1

2
(1− ‖π1p1 − π0p0‖1)



Optimal tests
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Asymptotics: Stein’s Lemma and Chernoff’s bound

Let {P0,P1} be a binary statistical model and let X1, . . . ,Xn i.i.d. with Xk ∼ Pi .

Theorem (Stein’s Lemma)

Let tn(X1, . . . ,Xn) be the most powerful level α test. Then

lim
n→∞

1

n
log Pn

1([tn = 0]) = −D(p0, p1)

where D(p0, p1) is the relative entropy

D(p0, p1) =

∫
p0(ω) log(p0/p1)µ(dω).

Theorem (Chernoff’s bound)

Let π0, π1 be a nondegenerate prior and let tn(X1, . . . ,Xn) be the optimal Bayes
test. Then

lim
n→∞

1

n
log Pe,n

π = −C(p0, p1)

where C(p0, p1) is the Chernoff distance

C(p0, p1) = − log

(
inf

0≤s≤1

∫
ps

0(ω)p1−s
1 (ω)µ(dω)

)



Wilk’s test

Let X1, . . . ,Xn ∼ Pθ with θ ∈ Rk+m.
We would like to test between the two hypotheses

I H0 : θ ∈ Θ0 := {θ : θi = θ
(0)
i , i = 1, . . . ,m}

I H1 : θ /∈ Θ0

Let `0 and `1 be the maximum log-likelihoods over Θ0 and Θ

`0 := sup{`θ : θ ∈ Θ0} `1 := sup{`θ : θ ∈ Θ}

Wilk’s Theorem Suppose H0 is true. Then under regularity assumptions, the
likelihood ratio statistic Tn := 2(`1 − `0) has asymptotic χ2

m distribution:

Tn
L→ χ2

m

The theorem suggests the following test of (asymptotic) level α:

accept H0 if Tn > c where P(Y > c) = α for Y ∼ χ2
m



2. Basics of quantum state estimation

I Quantum statistical models and state estimation

I Estimation of qubit states - simple non-adaptive measurements 3D

I Estimation of qubit states - simple non-adaptive measurements 1D

I Estimation of qubit states - simple adaptive measurements 2D

I Estimation of qubit states - simple adaptive measurements 3D



Set-up of quantum estimation problems

Quantum statistical model over Θ:

Q =
{
ρθ : θ ∈ Θ

}
Estimation procedure: measure state ρθ and devise estimator θ̂ = θ̂(R)

ρθ ∼∼∼∼∼∼∼∼∼∼∼∼∼∼
!M R ∼ P(M)

θ ! θ̂

Risk: R(θ̂, θ) = Eθ[W (θ̂, θ)], e.g. W (θ̂, θ) = ‖θ̂ − θ‖2

Measurement design:

I which classical model P(M) = {P(M)
θ : θ ∈ Θ} is ‘best’ ?

I trade-off between incompatible observables

I optimal measurement depends on statistical problem



Quantum statistical models

Definition
Let Θ be a parameter space. A quantum statistical model over Θ is a family
{ρθ : θ ∈ Θ} of density matrices on a given space H.

Example

I qubit states: indexed by r = (rx , ry , rz) ∈ R3 such that ‖r‖ ≤ 1

ρr =
1

2

(
1 + rz rx − iry

rx + iry 1− rz

) z

y

x

r

I coherent spin states: ρnr = ρr ⊗ · · · ⊗ ρr, for ‖r‖ = 1 (pure states)

I Unitary family: ρt = exp(iHt)ρ exp(iHt) for t ∈ R, H selfadjoint

I Gaussian states Φ(z ,V ) of a quantum continuous variables system, with
mean z ∈ C, and 2× 2 covariance matrix V



Quantum state estimation

Problem
Given

I a quantum statistical model {ρθ : θ ∈ Θ}
I a loss function W : Θ×Θ→ R+, e.g.

‖θ̂ − θ‖2 for Θ ⊂ Rk or ‖ρ̂− ρ‖1 if Θ ⊂ S(H), etc.

design a measurement M and an estimator θ̂(X ), where X is the outcome of
the measurement, such that

R(M, θ̂, θ) = Eθ(W (θ̂(X ), θ))

is small.

Remark

I same problem can be formulated for estimating a function g(θ)

I the main quantum feature is the optimisation over measurements step

I measurement and estimator can be ‘bundled’ into a measurement with
values in Θ (exercise)



Example: estimation of a spin state

Problem
Estimate ~r , given n quantum spins prepared in state

ρ~r :=
1

2

(
1 + rz rx − iry

rx + iry 1− rz

)
=

1

2
(1 + rxσx + ryσy + rzσz)

Basic solution: measure each σx,y,z separately on n/3 spins

Probability distribution for σi measurement: Pρ~r [σi = ±1] = (1± ri )/2

Estimator (as for coin toss) r̂i := 3
n

(n+
i − n−i )

Mean square error (risk) achieves the CR bound for
this measurement

E[‖~r−~̂r‖2] =
3

n
Tr

((
I (x) + I (y) + I (z)

)−1
)

=
3

n
(3−r 2)

z

y

x

!r
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Example: estimation of a pure spin state

Problem
Estimate rotation parameter for the 1D model

|ψu〉 := exp
(
iuσx

2

)
| ↑ 〉 = cos

(
u
2

)
| ↑〉+ i sin

(
u
2

)
| ↓ 〉

z

y

x

|ψu〉

Measure spin observable σy with probabilities P[X = ±1] = pu(±1) = 1±sin(u)
2

Fisher information

I (u) =
1

pu(1)

(
dpu(1)

du

)2

+
1

pu(−1)

(
dpu(−1)

du

)2

=
cos(u)2

2

(
1

1 + sin(u)
+

1

1− sin(u)

)
= 1

Risk of maximum likelihood estimator ûn := arcsin(n+ − n−)

E[(u − û)2] ≈ 1

n
I (u)−1 =

1

n
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E[(u − û)2] ≈ 1
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Example: estimation of a pure spin state

Problem
Estimate rotation paramaters (u, v) in 2D model

|ψu,v 〉 := exp

(
iuσx − vσy

2

)
| ↑ 〉

z

y

x

|ψu,v〉

Two step adaptive procedure

1. Measure ñ� n systems and obtain a preliminary estimator (e.g.| ↑〉)
2. Measure the orthogonal directions σx and σy , on (n − ñ)/2 systems

Total Fisher information matrix at (u, v) = (0, 0)

In((0, 0)) :=
n

2
(I (x) + I (y)) =

n

2

(
0 0
0 1

)
+

n

2

(
1 0
0 0

)
=

n

2
1

Risk of estimator (ûn, v̂n) =
(

(n
(y)
+ − n

(y)
+ ), (n

(x)
+ − n

(x)
− )
)

E[‖~ru,v −~rûn,v̂n‖
2] = E[(u − ûn)2 + (v − v̂n)2] ≈ Tr(In(0, 0)−1) =

4

n

Can we extract more statistical information with other measurements?
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(

(n
(y)
+ − n

(y)
+ ), (n

(x)
+ − n

(x)
− )
)

E[‖~ru,v −~rûn,v̂n‖
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Example: estimation of a mixed spin state

Problem
Estimate ~r , given n quantum spins prepared in state

ρ~r :=
1

2

(
1 + rz rx − iry

rx + iry 1− rz

)
=

1

2
(1 + rxσx + ryσy + rzσz)

z

y

x

!r

Two step adaptive procedure

1. Measure ñ� n systems and obtain a preliminary estimator, e.g.

ρ0 = ρ~r0 :=
1 + r0

2
| ↑〉〈↑ |+ 1− r0

2
| ↓〉〈↓ |

2. Estimate (rx , ry , rz) by measuring (σx , σy , σz) separately on(
λ(n−ñ)

2
, λ(n−ñ)

2
, (1− λ)(n − ñ)

)
systems

Risk for the optimal choice of λ

E[‖~r − ~̂rn‖2] ≈ Tr(In(~r0)−1) =
(2 +

√
1− r 2)2

n
<

3(3− r 2)

n

Can we extract more statistical information with other measurements?
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Outlook

I For a given repeated measurement we can use classical asymptotic theory
to compute asymptotic rates of convergence and error bars

I Adaptive (separate) measurements perform better than fixed design ones

I Joint measurements perform better than separate ones for
multi-dimensional models with mixed states (see second lecture)



3. The 8 (14) ions experiment

I Measurement and statistical model

I Fisher information and Cramér-Rao bound

I Asymptotic error for pure states

I The Bayesian information criterion (BIC)

I Behaviour of the Cramér-Rao bound with the rank

I Estimation error in models with higher rank



Quantum tomography for trapped ions

[Häffner et al, Nature 2005]

Goal: prepare a W (entangled) state of several (4 to 8) ions

Validation: statistical ‘reconstruction’ of the quantum state ρ ∈ M(C2k )

I 48 − 1 = 65 535 parameters to estimate (8 ions)

I 38 × 100 = 656 100 repeated measurements

I 10 hours measurement time

I weeks of computer time (‘maximum likelihood’)

I fidelity between estimator and target state between 0.85 and 0.72



Measurement procedure and statistical model

All measurements are performed on independent identically prepared states

ρ ∈ M(C2k )

1. For each ion choose a spin direction to measure σd ∈ {σx , σy , σz}

2. measure each qubit and obtain outcome s := (s1, . . . , sk) ∈ {1,−1}k

Pρ(s|d) = Pρ(s1, . . . , sk |σd1 , . . . , σdk ) =
〈

es1
d1
⊗ · · · ⊗ esk

dk
| ρ |es1

d1
⊗ · · · ⊗ esk

dk

〉
3. Repeat 100 times and collect counts of outcomes {Ns,d : s ∈ {1,−1}k}

Pρ({Ns,d : s ∈ {1,−1}k}) =
100!∏
s Ns,d!

∏
s

Pρ(s|d)Ns,d

4. Repeat over all 3k choices of measurement set-ups

Total set of 3k × 2k � 4k projections is highly overcomplete in M(C2k )!



Measurement data

I 3k columns of length 2k

I one column for each measurement setting

I each column contains the counts of the 2k possible outcomes totalling 100

I frequencies of outcomes are bad estimates of probabilities, but overall info
is high

[Data set 4 ions (from H. Häffner)]



Questions

I Why did it work ? Would it work for a very mixed state as well?

I What is the structure of the data? Are we in an asymptotic regime ?

I Are there other less expensive estimation methods ?



Outline

I Measurement and statistical model

I Fisher information and Cramér-Rao bound

I Asymptotic error for pure states

I The Bayesian information criterion (BIC)

I Behaviour of the Cramér-Rao bound with the rank

I Estimation error in models with higher rank



Asymptotics in estimation of biased coin

I X1, . . .Xn i.i.d. with P[Xi = 1] = θ and P[Xi = 0] = 1− θ

I Estimator θ̂n := 1
n

∑n
i=1 Xi

I Central Limit Theorem
√

n(θ̂n − θ)
D−→ N(0, θ(1− θ))
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Fisher information, Cramér-Rao bound and asymptotic normality

Let X1, . . . ,Xn be i.i.d. data with probability distribution Pθ and θ ∈ Rp

I Cramér-Rao bound

for every estimator θ̂n = θ̂n(X1, . . . ,Xn) which is unbiased, i.e. E(θ̂n) = θ

Eθ
[
(θ̂n − θ)T (θ̂n − θ)

]
≥ (nIθ)−1

where I θ is the Fisher information matrix

I (θ)i,j :=

∫
∂pθ(x)

∂θi

∂pθ(x)

∂θi
pθ(x)dx

I “good” estimators (e.g. max.lik. under certain conditions) are
asymptotically normal

√
n(θ̂n − θ) ≈ N(0, I−1(θ))



Maximum likelihood estimation for pure states
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Maximum likelihood estimator ρ̂ml = ρ̂ml({Ns,d})

ρ̂ml := arg max
τ

∏
d

Pτ ({Ns,d})



Maximum likelihood estimation for pure states

Histogram of Norm−2 Squared Error of MLE (100 runs)
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Histogram of ‖ρ̂ml − ρ‖2 for a pure state ρ ∈ M(C24
) (100 repetitions)

I Very good agreement with asymptotic theory

I median very close to the Cramer-Rao bound (blue line)

I Measurement is very close to optimal

I Quantum CR bound 30/(100 ∗ 34) = 0.0037 (red line) slightly smaller than
classical CR



Outline

I Measurement and statistical model

I Fisher information and Cramér-Rao bound

I Asymptotic error for pure states

I The Bayesian information criterion (BIC)

I Behaviour of the Cramér-Rao bound with the rank

I Estimation error in models with higher rank



Choosing the rank of the state by BIC

If state is not known to be pure, can we estimate it without doing ML over all
states?

1. Perform separate ML over states of rank r = 1, 2, 3, ... to obtain
ρ̂

(1)
ml, ρ̂

(2)
ml, ρ̂

(3)
ml...

2. Choose the rank r which minimises the Bayesian information criterion (BIC):

BIC(r) = −2 log P
ρ̂

(r)
ml

(DATA) + ]parameters(ρ̂
(r)
ml) ∗ log n

= −2 log P
ρ̂

(r)
ml

({Ns,d}) + (2r ∗ 2k − r 2 − 1) ∗ log n

Theoretical motivation:
In a Bayesian set-up the states are drawn by first choosing the rank according
to a prior {π(r)}, followed by choosing a state of rank r from some distribution.

Then the rank with the highest posterior probability is selected

The BIC is an asymptotic approximation to the log of the posterior likelihood.
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states?

1. Perform separate ML over states of rank r = 1, 2, 3, ... to obtain
ρ̂

(1)
ml, ρ̂

(2)
ml, ρ̂

(3)
ml...

2. Choose the rank r which minimises the Bayesian information criterion (BIC):

BIC(r) = −2 log P
ρ̂

(r)
ml

(DATA) + ]parameters(ρ̂
(r)
ml) ∗ log n

= −2 log P
ρ̂

(r)
ml

({Ns,d}) + (2r ∗ 2k − r 2 − 1) ∗ log n

Theoretical motivation:
In a Bayesian set-up the states are drawn by first choosing the rank according
to a prior {π(r)}, followed by choosing a state of rank r from some distribution.

Then the rank with the highest posterior probability is selected

The BIC is an asymptotic approximation to the log of the posterior likelihood.



BIC performance

BIC chosen rank

1 2 3

true

rank

1 99 0 1

2 0 90 10

3 0 6 94

BIC performance in 100 repetitions from states

of rank 1,2,3
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Outline

I Measurement and statistical model

I Fisher information and Cramér-Rao bound

I Asymptotic error for pure states

I The Bayesian information criterion (BIC)

I Behaviour of the Cramér-Rao bound with the rank

I Estimation error in models with higher rank



Classical Cramér-Rao bound vs Holevo bound

Quantum statistical model of rank r states Qr := {ρθ : θ ∈ Θ(r) ⊂ Rdim(r)}

Classical Cramér-Rao bound

nE‖ρ− ρ̂n‖2
2 = nE‖ρθ − ρθ̂n‖

2
2 ≥ Tr(G(θ)I (θ)−1)

I I (θ) is the dim(r)× dim(r) (measurement dependent) Fisher info. matrix

I G(θ) is the dim(r)× dim(r) matrix of the quadratic approximation of loss

‖ρ− ρ̂‖2
2 = ‖ρθ − ρθ̂‖

2
2 ≈ (θ − θ̂)G(θ)(θ − θ̂)T

Quantum Holevo bound:

BEST measurement & estimator for a state ρ with eigenvalues
µ1 ≥ µ2 ≥ · · · ≥ µd

nE‖ρ− ρ̂n‖2
2 →

d∑
i=1

µi (1− µi ) + 2
∑
j<k

µj ≤ 2d + 1

does not increase with the rank!



Error rates as function of the rank of true state
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Error rates as function of the rank of true state

Mean square error for ions measurement appears to increase linearly with rank
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Relative difference in error for different ranks
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Behaviour of the Cramér-Rao bound for nested models

I Successive inclusions of subspaces of states of given rank

S(1) ⊂ S(2) ⊂ ..

I True state ρ = ρθ(r) ∈ S(r)

I Estimate as a state of rank r ′ ≥ r i.e. ρ = ρ
θ(r′)

Claim:
Tr
(

I (θ(r))−1G(θ(r))
)

= Tr
(

I (θ(r′))−1G(θ(r′))
)

Explanation:
Additional parameters represent eigenvectors for very small eigenvalues
Model can be seen as mixture of pure state models, with some very small
probabilities

p(θ1, θ2) = µ1p(θ1) + µ2p(θ2), µ2 � 1

loss function (figure of merit) is insensitive to errors in parameters for small
weight

D
[
(θ1, θ2), (θ̂1, θ̂2)

]
≈ D(θ1, θ̂1)



Outlook

I Measurement was well within the asymptotic set-up

I For pure states the “8 ions measurement” peforms very close to optimal
measurement

I For mixed states the MSE increases linearly with the rank

I BIC performs well in selecting the rank of true state;

I BIC provides faster estimation method than “global” ML

I MSE is not very sensitive to overestimating the rank of the state



Outline of the mini-course

1. Notions of statistical inference

2. Basics of quantum state estimation

3. The 8 (14) ions experiment

4. The quantum Cramér-Rao theory

5. Local asymptotic normality for i.i.d. quantum states

6. Local asymptotic normality for quantum Markov chains



4. The quantum Cramér-Rao theory

I The L2(ρ) Hilbert space

I The quantum Fisher-Helstrom information matrix

I Quantum Cramér-Rao bound

I The quantum Cramér-Rao bound is achievable for Θ ⊂ R

I (Non)-achievability of the quantum C.-R. bound for Θ ⊂ Rk with k > 1

I The Holevo bound



Quantum Statistics pioneers

I Helstrom, Holevo, Belavkin, Yuen, Kennedy...

I Formulated and solved first quantum statistical decision problems

I quantum statistical model Q = {ρθ : θ ∈ Θ}
I decision problem (estimation, testing)

I find optimal measurement (and estimator)

I Quantum Gaussian states, covariant families, state discrimination...

I Elements of a (purely) quantum statistical theory
I Quantum Fisher Information

I Quantum Cramér-Rao bound(s)

I Holevo bound for quadratic risk

I ...



Motivating questions

I How much statistical information can be extracted from a quantum model
?

I Is there a quantum analogue of asymptotic normality ?

I Is there a quantum analogue of likelihood ratio, sufficiency, ....



The L2(ρ) Hilbert space

Definition
Let ρ be a state on Cd . We denote by L2

R(ρ) the Hilbert space
(M(Cd)sa, 〈·, ·〉ρ) with inner product

〈A,B〉ρ := Tr (ρA ◦ B) , A ◦ B :=
1

2
(AB + BA)

Remark

I If Tr(ρ(A− B)2) = 0 then A and B correspond to the same vector in
L2
R(ρ). This identification is relevant when ρ is not full rank.

I For infinite dimensional spaces L2
R(ρ) is defined as the completion of

B(H)sa with respect to 〈·, ·〉ρ. Each vector in L2
R(ρ) can be identified with

(the equivalence class of) a square summable operator w.r.t. ρ, i.e.
unbounded symmetric linear operators satisfying∑

λi‖Xei‖2 <∞

where ρ =
∑

i λi |ei 〉〈ei | is the spectral decomposition of ρ.
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The quantum Fisher-Helstrom information matrix

Let {ρθ : θ ∈ Θ} be a parametric statistical model with ρθ ∈ M(Cd) and
Θ ⊂ Rk open, and assume that θ 7→ ρθ is a differentiable function.

Definition

I The symmetric logarithmic derivative (s.l.d.) for the coordinate θi is the
unique vector Lθ,i ∈ L2

R(ρθ) such that

∂ρθ
∂θi

= Lθ,i ◦ ρθ

I The quantum Fisher-Helstrom information matrix is defined as

H(θ)i,j = 〈Lθ,i ,Lθ,j〉θ = Tr(ρθLθ,i ◦ Lθ,j)

Remark

I For infinite dimensional spaces we need to assume that the linear map
ϕi : A 7→ Tr(∂ρθ/∂θiA) can be extended to a continuous funct. on L2

R(ρθ).
The s.l.d. is then defined by ϕi (A) = 〈A,Lθ,i 〉θ (cf. Riesz Theorem)

I When {ρθ : θ ∈ Θ} form a commuting family, the s.l.d. Lθ,i can be
identified with the classical score function ˙̀

θ,i = ∂ log pθ/∂θi
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Properties of the quantum Fisher-Helstrom information matrix

I H(θ) is a real positive definite matrix

I additivity: if ρθ = ρ
(1)
θ ⊗ ρ

(2)
θ then H(θ) = H(θ)(1) + H(θ)(2) (exercise)

I The Bures (fidelity) distance between two states is defined by

b(ρ1, ρ2)2 := 2(1− Tr(

√
ρ

1/2
1 ρ2ρ

1/2
1 ))

Infinitesimally, the Bures distance is given by

b(ρθ, ρθ+dθ)2 =
1

4
H(θ)(dθ)2 + o((dθ)2)

I contractivity: let C : T1(H)→ T1(K) be a quantum channel (completely
positive, trace preserving linear map). Let τθ := C(ρθ) be the quantum
model obtained by applying the ‘quantum randomisation’ C to ρθ. Then

b(ρθ1 , ρθ2 ) ≥ b(τθ1 , τθ2 ), and H(ρθ) ≥ H(τθ)

I unlike the classical case, H is not the unique contractive metric. Such
metrics are in one-to-one correspondence with operator monotone
functions f : R+ → R (i.e. f (A) ≥ f (B) for all A ≥ B ≥ 0 in B(H))
satisfying f (t) = tf (t−1) and f (1) = 1

Reference: D. Petz, Linear Algebra Appl. 244 81-96 (1996)
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Quantum Cramér-Rao bound (I)

Theorem
Let Q := {ρθ : θ ∈ Θ ⊂ Rk} be a quantum statistical model with quantum
Fisher-Helstrom, information matrix H(θ).

Let M be a measurement with outcomes in {1, . . . , k} and let IM(θ) be the
Fisher information matrix of the classical statistical model
PM := {P(M)

θ : θ ∈ Θ} .

Then the matrix inequality holds

IM(θ) ≤ H(θ)

and in particular, for any unbiased estimator θ̂ of θ we have

Var(θ̂) ≥ IM(θ)−1 ≥ H(θ)−1

Remark

I In the last display, the left inequality is the ‘classical’ Cramér-Rao.

I the right inequality follows from applying the operator monotone function
f (x) = x−1 to the previous inequality IM(θ) ≤ H(θ).

I A function is called operator monotone if f (A) ≤ f (B) for all bounded
operators satisfying 0 ≤ A ≤ B. Not all monotone functions are operator
monotone (exercise)
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Example: unitary family

Let ρθ := exp(−iθK)ρ exp(iθK) with ρ =
∑

i λi |i〉〈i | and θ ∈ R.

I Symmetric logarithmic derivative

dρθ
dθ

∣∣∣∣
θ=0

= −i [K , ρ] = ρ ◦ L

I Solution

〈i |L|j〉 =
2i(λi − λj)

λi + λj
〈i |K |j〉

I Quantum Fisher information H(θ) = H

H = Tr(ρL2) = 4
∑
ij

λi

(
λi − λj

λi + λj

)2

|〈i |K |j〉|2 pure states−→ H = 4〈ψ|K 2|ψ〉



Example (exercise)

Let ρr be the qubit state with Bloch vector r represented in polar coordinates
r↔ (r , θ, φ)

ρr =
1

2

(
1 + r cos θ r sin θe−iφ

r sin θe−iφ 1− r cos θ

)
=

1

2
(1 + rσ)

Symmetric logarithmic derivatives

∂ρr

∂r
= Lr,r ◦ ρr,

∂ρθ
∂θ

= Lr,θ ◦ ρr,
∂ρr

∂φ
= Lr,φ ◦ ρφ

with solutions

Lr =
1

1 + r
(1 + rσ/r), Lθ =

∂r

∂θ
σ, Lφ =

∂r

∂φ
σ.

Quantum Fisher-Helstrom information matrix

H(r) =

 1
1−r2 0 0

0 r 2 0
0 0 r 2 sin θ2





The proof [Braunstein and Caves (1994)]

Consider θ one dimensional. General case is left as an exercise
Let M = (M1, . . . ,Mk) be the POVM.

Differentiating pθ(i) = Tr(ρθMi ) and using dρθ/dθ = Lθ ◦ ρθ we get

dpθ(i)

dθ
= Tr(Lθ ◦ ρθMi ) = ReTr(ρθLθMi )

Then with I := {i : pθ(i) 6= 0} we have the inequalites

IM(θ) =
∑
i∈I

pθ(i)−1 (ReTr(ρθLθMi ))2

≤
∑
i∈I

pθ(i)−1 |Tr(ρθLθMi )|2

=
∑
i∈I

Tr(ρθMi )
−1
∣∣∣Tr((M

1/2
i ρ

1/2
θ )∗M

1/2
i Lθρ

1/2
θ )
∣∣∣2

≤
∑
i∈I

Tr(MiLθρθLθ) ≤
k∑

i=1

Tr(MiLθρθLθ)

= H(θ)

where we used Cauchy-Schwarz in the second inequality



The algebraic proof: geometric idea

Lθ

!̇θ

L2
R(ρθ)

!2R(pθ)

Both classical and quantum Fisher informations are equal to the square lengths
of Hilbert space vectors

IM(θ) = ‖ ˙̀
θ‖2 with ˙̀

θ ∈ `2(pθ)

H(θ) = ‖Lθ‖2 with Lθ ∈ L2(ρθ)

With the appropriate embedings, ˙̀
θ is the projection of Lθ onto `2(pθ), hence

IM(θ) ≤ H(θ)

See Quantum Statistics notes at
http://maths.dept.shef.ac.uk/magic/course.php?id=181 for the full proof



The quantum Cramér-Rao bound is asymptotically achievable for Θ ⊂ R

I Let L be the result of measuring Lθ0

I For θ = θ0

Eθ0 (L) = Tr(ρθ0Lθ0 ) = 0, Varθ0 (L) = Tr(ρθ0L
2
θ0

) = H(θ0)

I Estimator

θ̂ := θ0 +
L

H(θ0)

is locally unbiased around θ0 since

Eθ(θ̂) = θ0 +
Tr(ρθLθ0 )

H(θ0)
= θ0 + dθ

Tr( dρθ
dθ
Lθ0 )

H(θ0)
+ o(dθ)

= θ0 + dθ
Tr(ρθ0L2

θ0
)

H(θ0)
+ o(dθ) = θ + o(dθ)

and its variance is

Var(θ̂) =
Var(L)

H(θ0)2
= H(θ0)−1
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The quantum Cramér-Rao bound is asymptotically achievable for Θ ⊂ R

Rigourous argument in the asymptotic framework using an adaptive procedure:

1. measure fraction ñ� n of systems to obtain rough estimator θ0

2. measure L(n)
θ0

:= Lθ0 ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ 1⊗ · · · ⊗ Lθ0

3. set θ̂n := θ0 + L(n)
θ0
/H(θ0)

The estimator is asymptotically efficient

√
n(θ̂n − θ)

L−→ N(0,H(θ)−1)



Achievability of the quantum Cramér-Rao bound for Θ ⊂ Rk with k > 1

I Bound is achievable iff

Tr(ρθ[Lθ,j , Lθ,i ]) = 0, ∀1 ≤ i , j ≤ k

I Bound is sharp

Cov(θ̂) ≥ K−1(θ), ∀ unbiased M =⇒ H(θ)−1 ≥ K−1(θ)

I Bound is not achievable in e.g., 2d-qubit rotation model, gaussian
displacement

I What is a ‘good estimator’ in this case?

I Trade-off between estimation of different coordinates

I Optimal measurement depends on loss function



The Holevo bound for quadratic risk

Let Q = {ρθ : θ ∈ Θ ⊂ Rk} be a quantum statistical model on H and let
W (θ̂, θ) be a quadratic loss function, i.e.

W (θ̂, θ) =
∑
i,j

(θ̂i − θi )Gij(θ̂j − θj) = (θ̂ − θ)G(θ̂ − θ)T

Theorem (Holevo bound)

For any measurement M with unbiased outcome θ̂ the following bound holds:

Tr(GVar(θ̂)) ≥ inf
Xθ

{
Tr
(√

GRe(Z(Xθ))
√

G
)

+ Tr
(∣∣∣√G Im(Z(Xθ))

√
G
∣∣∣)}

where Xθ := (Xθ,1, . . . ,Xθ,k) is a k-tuple of selfadjoint operators satisfying

Tr(ρθXθ,i ) = 0, Tr(
∂ρθ
∂θi

Xθ,j) = δi,j ,

and Z(Xθ)i,j := (Xθ,i ,Xθ,j)θ = Tr(ρθXθ,jXθ,i ).
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The Holevo bound is achievable (asymptotically)

1. The Holevo bound is achieved in the case of quantum Gaussian shift
models, i.e. Gaussian states of quantum cv systems with unknown means
and fixed, known covariance.

2. The Holevo bound is achieved asymptotically for i.i.d. models of finite
dimensional states, i.e. ρθ ⊗ · · · ⊗ ρθ with ρθ ∈ M(Cd)

The measurement consists of a two steps adaptive procedure (as in the
case of one-dimensional parameter), with the difference that in the second
step one needs to perform a joint measurement (not separable) on the
n − ñ systems. The measurement can be understood by showing that the
n particle model ‘converges’ to a Gaussian model for which the solution is
known.

I A proof based on Cramér-Rao analysis is given for d = 2 in
M. Hayashi and K. Matsumoto: arXiv:quant-ph/0411073

I For the general case d <∞ the result follows from the theory of ‘local
asymptotic normality’ developed in
J. Kahn and M. G. (CMP 2009)



Quantum Gaussian shift model(s)

Displacement operator D(u, v) := exp(ivQ − iuP)

I Coherent (laser) state

|u, v〉 := D(u, v)|0〉

P

Q

v

u

|u, v〉

I Displaced thermal state
Φ(u, v ; s) = D(u, v)Φ(s)D(u, v)∗

P

Q

v

u

Φ(u, v ; s)

Estimation problem

Find the optimal measurement for {Φ(u, v ; s) : (u, v) ∈ R2} with respect to

Rmax(û, v̂) = E[(u − û)2 + (v − v̂)2]



Joint measurement of Q and P

I Oscillator (Q,P) to be measured, prepared in state ρ

I Additional oscillator (Q ′,P ′) in state τ ′

I Beam splitter

Q± := Q ± Q ′

P± := P ± P ′

I Commuting noisy coordinates: [Q+,P−] = 0

(Q,P )

(Q′, P ′)

(Q+, P+)

(Q−, P−)

Covariant measurements
Any displacement covariant measurement for (Q,P) is equivalent to measuring
the pair Q + Q̃ and P − P̃ for some ancillary state τ of (Q̃, P̃).
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Optimal measurement for Gaussian shift

I Gaussian shift model Φ(u, v ; s) = D(u, v)Φ(s)D∗(u, v)

I Risk of the covariant measurement with (centred) ancilla state τ

R(τ) = Tr
(

Φ(s)⊗ τ
(

(Q + Q̃)2 + (P − P̃)2
))

= VarΦ(s)(Q) + VarΦ(s)(P) + Varτ (Q̃) + Varτ (P̃)

I Heterodyne measurement: when τ = |0〉〈0| the additional contribution is
minimal

Var|0〉〈0|(Q̃) + Var|0〉〈0|(P̃) = 1

Theorem
The heterodyne measurement is optimal among covariant or unbiased
measurements and achieves the minimax risk for the loss function
|u − û|2 + |v − v̂ |2.



5. Local asymptotic normality for i.i.d. quantum states

I The idea of local asymptotic normality

I Holstein-Primakov (Gaussian approximation)

I Local asymptotic normality for qubits

I Local asymptotic normality for d-dimensional systems



Reminder: local asymptotic normality for coin toss

I Data: X1, . . . ,Xn i.i.d. Bernoulli with Pθ([X = 1]) = θ

I Optimal estimator: X̄n =
∑n

i=1 Xi/n

I Central Limit Theorem:
√

n(X̄n − θ)
D−→ N(0, θ(1− θ))

Local parameter: θ = θ0 + u/
√

n

ûn :=
√

n(θ̂n − θ0) ≈ N(u, θ0(1− θ0))
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ûn :=
√

n(θ̂n − θ0) ≈ N(u, θ0(1− θ0))

0.2

k

0.15

80

0.1

0.05

60
0

40200

Binomial n=100 p=0.5    

Normal m=50 v=25        



Reminder: local asymptotic normality for coin toss

I Data: X1, . . . ,Xn i.i.d. Bernoulli with Pθ([X = 1]) = θ

I Optimal estimator: X̄n =
∑n

i=1 Xi/n

I Central Limit Theorem:
√

n(X̄n − θ)
D−→ N(0, θ(1− θ))

Local parameter: θ = θ0 + u/
√

n
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Reminder: local asymptotic normality for coin toss

I Data: X1, . . . ,Xn i.i.d. Bernoulli with Pθ([X = 1]) = θ

I Optimal estimator: X̄n =
∑n

i=1 Xi/n

I Central Limit Theorem:
√

n(X̄n − θ)
D−→ N(0, θ(1− θ))

Local parameter: θ = θ0 + u/
√

n

ûn :=
√

n(θ̂n − θ0) ≈ N(u, θ0(1− θ0))
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LAN for general parametric model

I (Y1, . . . ,Yn) i.i.d. with Pθ0+u/
√
n a ‘smooth’ family with u ∈ Rk . Then{

Pn
θ0+u/

√
n : u ∈ Rk

}
 
{

N(u, I−1
θ0

) : u ∈ Rk
}
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I (Y1, . . . ,Yn) i.i.d. with Pθ0+u/
√
n a ‘smooth’ family with u ∈ Rk . Then{

Pn
θ0+u/

√
n : u ∈ Rk

}
 
{

N(u, I−1
θ0

) : u ∈ Rk
}

I Weak convergence:{
dPn

θ0+u/
√
n

dPn
θ0

: u ∈ Rk

}
D−→

{
dN(u, I−1

θ0
)

dN(0, I−1
θ0

)
: u ∈ Rk

}



LAN for general parametric model

I (Y1, . . . ,Yn) i.i.d. with Pθ0+u/
√
n a ‘smooth’ family with u ∈ Rk . Then{

Pn
θ0+u/

√
n : u ∈ Rk

}
 
{

N(u, I−1
θ0

) : u ∈ Rk
}

I Strong convergence (Le Cam):

there exist randomizations Tn, Sn such that for η < 1/4

lim
n→∞

sup
‖u‖≤nη

∥∥∥Tn Pn
θ0+u/

√
n − N(u, I−1

θ0
)
∥∥∥
tv

= 0

and

lim
n→∞

sup
‖u‖≤nη

∥∥∥Pn
θ0+u/

√
n − Sn N(u, I−1

θ0
)
∥∥∥
tv

= 0



Optimal estimation using local asymptotic normality

Φθ ∼∼∼∼∼∼∼∼∼∼ H ! Y ∼ P(H,Φθ) ! θ̂

ρθ ∼∼∼∼∼∼∼∼∼∼

ρθ ∼∼∼∼∼∼∼∼∼∼

ρθ ∼∼∼∼∼∼∼∼∼∼

Mn ! Xn ∼ P(Mn, ρθ) ! θ̂n

n → ∞

[L. Le Cam]

I Sequence of I.I.D. quantum statistical models Qn = {ρ⊗n
θ : θ ∈ Θ}

I Qn converges (locally) to simpler Gaussian shift model Q

I Optimal measurement for limit Q can be pulled back to Qn



Two quantum state estimation problems

I Two parameter model in C2

|ψu,v 〉 = exp(i(vσx − uσy ))| ↑ 〉

z

y

x

|ψu,v〉

I Coherent (laser) state

|u, v〉 = D(u, v)|0〉

P

Q

v

u

|u, v〉



Estimation of a pure spin state revisited

Two-dim. model: (small) rotation of | ↑ 〉

|ψu,v 〉 := exp (i(uσx − vσy )) | ↑ 〉

z

y

x

|ψu,v〉

Symmetric logarithmic derivatives at (u, v) = (0, 0):
∂ρu,v
∂u

∣∣∣
u=0,v=0

= ρ0,0 ◦ L(u)
0,0 =⇒ L(u)

0,0 = 2σy

∂ρu,v
∂u

∣∣∣
u=0,v=0

= ρ0,0 ◦ L(v)
0,0 =⇒ L(v)

0,0 = 2σx

Expectations and variances:
E[2σy ] ≈ 4u Var(2σy ) = 4Tr

[
ρu,v (σy − E[σy ]1)2

]
≈ 4

E[2σx ] ≈ 4v Var(2σx) = 4Tr
[
ρu,v (σx − E[σx ]1)2

]
≈ 4

Optimal measurements for ux and uy are incompatible: [σx , σy ] 6= 0
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Holstein-Primakoff (Gaussian approximation)

I n identically prepared spin-1/2 systems∣∣∣ψ u√
n
, v√

n

〉
:= exp

(
i
vσx − uσy√

n

)
| ↑ 〉

I Collective observables Lx,y,z :=
∑n

i=1 σ
(i)
x,y,z

I Quantum Central Limit Theorem (u = 0, v = 0)

Lx√
n

D−→ N(0, 1)

Ly√
n

D−→ N(0, 1)

[
Lx√
n
,

Ly√
n

]
= 2i

n
Lz

l.l.n.

−−−→ 2i1

[
Ly√
n
, Lz√

n

]
= 2i

n
Lx

l.l.n.

−−−→ 0

•

z

x

y

√

n

n

[Holstein and Primakoff P.R. 1940] [Radcliffe J.Phys. A 1971] [Klein and Marshalek Rev. Mod. Phys. 1991]
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Holstein-Primakoff (Gaussian approximation)

I n identically prepared spin-1/2 systems∣∣∣ψ u√
n
, v√

n

〉
:= exp

(
i
vσx − uσy√

n

)
| ↑ 〉

I Collective observables Lx,y,z :=
∑n

i=1 σ
(i)
x,y,z

I Quantum Central Limit Theorem (mixed states)

Lx√
n

D−→ N(2(2µ− 1)u, 1)

Lz−n(2µ−1)√
n

D−→ N(h, µ(1− µ))

[
Lx√
n
,

Ly√
n

]
= 2i

n
Lz

l.l.n.

−−→ 2(2µ− 1)i1

[
Ly√
n
, Lz√

n

]
= 2i

n
Lx

l.l.n.

−−−→ 0

•

z

x

√

n

y

(2µ − 1)n

[Holstein and Primakoff P.R. 1940] [Radcliffe J.Phys. A 1971] [Klein and Marshalek Rev. Mod. Phys. 1991]



Local spin model and the Gaussian limit

I
{
ρu/
√

n : u = (u, v , h)
}

neighbourhood of ρ0 := Diag(µ, 1− µ)

ρu/
√

n := Un (u, v)

[
µ + h√

n
0

0 1− µ− h√
n

]
Un (u, v)∗

Un(u, v) := exp(i(vσx − uσy )/
√
n)

z

y

x

I Gaussian shift model: Nu ⊗ Φu

I Classical part: Lz−n(2µ−1)√
n

−→ X with distribution Nu := N(h, µ(1− µ))

I Quantum part:

Lx√
2n(2µ−1)

−→ Q

Ly√
2n(2µ−1)

−→ P

 in state Φu := Φ

(
u
√

2(2µ− 1) , v
√

2(2µ− 1) ;
1

2(2µ− 1)

)
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)



Local asymptotic normality for mixed spin states

Theorem
Let ρu,n :=

(
ρu/
√
n

)⊗n
be the state of n i.i.d. spins with 1/2 < µ < 1.

Then there exist quantum channels Tn, Sn such that for any η < 1/4

lim
n→∞

sup
‖u‖<nη

‖Tn (ρu,n)− Nu ⊗ Φu‖1 = 0,

and
lim

n→∞
sup
‖u‖<nη

‖ρu,n − Sn (Nu ⊗ Φu)‖1 = 0.

[Guta, Janssens and Kahn, C.M.P. 2008]



Asymptotically optimal (adaptive) measurement procedure

Given n i.i.d. spins prepared in state ρθ

n
−1/2+η

n
−1/2+ε

1. Use n1−ε copies to produce a rough estimator ρ0

2. Map remaining ñ = n − n1−ε states through Tñ

3. Perform optimal Gaussian measurement and produce estimator

θ̂n = θ0 + û/
√

ñ



Idea of the proof

I Block diagonal form (Weyl Theorem)

(
C2
)⊗n

=

n/2⊕
j=0,1/2

C2j+1 ⊗ Cdj

ρ⊗n
u/
√

n
=

n/2⊕
j=0,1/2

pu,n(j) ρu,n(j)⊗
1

dj

I Classical part: pu,n(j) = P[L = j ] with L the total spin

L ≈ Lz ∼ Bin(µ+ uz/
√

n, n)
s.−→ Nu

I Quantum part: embed conditional state ρu,j isometrically into L2(R)

Vj : Hj → L2(R)

Tj : ρu,j 7−→ Vjρu,jV
∗
j



Isometric embedding

I Orthonormal bases

Lz |m, j〉 = m|m, j〉 ( C2j+1 )

|k〉 = Hk(x)e−x2/2 ( L2(R) )

I Ladder operators{
L+ := Lx + iLy

L− := Lx − iLy
and

{
a := (Q + iP)/

√
2

a∗ := (Q − iP)/
√

2

m = j

m = j-1

m = -j

a

a∗

Vj

|0〉

|1〉

|2j + 1〉

L+

L−



Back to pure spin states

I n identically prepared spins

|ψu,n〉 =
[
cos
(

u√
n

)
| ↑ 〉+ sin

(
u√
n

)
| ↓ 〉

]⊗n

z

y

x

|ψu〉

Local asymptotic normality

{|ψu,n〉 : u ∈ R} converges to the Gaussian model {|
√

2u, 0〉 : u ∈ R}

I Weak convergence:

〈ψu,n|ψv,n〉 = cos((u − v)/
√
n)n −→ e−

1
2

(u−v)2
= 〈
√

2u, 0|
√

2v , 0〉

I Strong convergence: there exist quantum channels Tn s.t. for 0 < η < 1/4

lim
n→∞

sup
‖u‖≤nη

∥∥∥Tn (|ψu,n〉〈ψu,n|)− |
√

2u, 0〉〈
√

2u, 0|
∥∥∥

1
= 0
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Local asymptotic normality in d-dimensions

I Local model around ρ0 = Diag(µ1, . . . , µd) with µ1 > µ2 > · · · > µd > 0

ρu/
√

n =


µ1 + h1/

√
n . . . z∗1,d/

√
n

.

.

.
. . .

.

.

.

z1,d/
√
n . . . µd −

∑d−1
i=1 hi/

√
n

 u = (h, z) ∈ Rd−1 × Cd(d−1)/2

I Gaussian shift model: Nu ⊗ Φu

I Classical part: Nu := N(h, I−1
µ )

I Quantum part: Φu :=
⊗

1≤j<k≤d Φ

(
zj,k

2
√
µj−µk

;
µj+µk

2(µj−µk )

)



Local asymptotic normality in d-dimensions

Theorem
Let ρu,n :=

(
ρu/
√
n

)⊗n
be the state of n i.i.d systems with µ1 > · · · > µd > 0.

Then there exist quantum channels Tn, Sn such that

lim
n→∞

sup
u∈Θn,β,γ

‖Tn(ρu,n)− Nu ⊗ Φu‖1 = 0

lim
n→∞

sup
u∈Θn,β,γ

‖Sn(Nu ⊗ Φu)− ρu,n‖1 = 0

where

Θn,β,γ =
{

u := (h, d) : ‖z‖ ≤ nβ , ‖d‖ ≤ nγ
}
, with β < 1/9, γ < 1/4.

[Guta and Kahn, C.M.P. 2009]



Blocks indexed by Young diagrams

I Block diagonal form
(
Cd
)⊗n

=
⊕
λ

Hλ ⊗Kλ

ρ
⊗n

u/
√

n
=

⊕
λ

pu,n(λ) ρu,n(λ)⊗ trλ

I Young diagrams λ with d lines and n boxes λ1 ≈ nµ1

λd ≈ nµd

I Classical part: pu,n ≈ Mult
(
µ1 + h1√

n
, . . . , µd −

∑
i

hi√
n

; n
)

=⇒ Nu



Bases and ladder operators in Hλ

I Non-orthogonal basis |t, λ〉 = |m, λ〉

m = (mi,j = ]j’s in row i} : i < j)

Structure of πλ:

• ‘Ladder operators’ Li,j = πλ(Ei,j), L∗i,j = πλ(Ej,i) for 1 ≤ i < j ≤ d don’t act as ladder...

L∗2,3 :
1 1 2
2 2
3

−→
1 1 3
2 2
3

+ 2
1 1 2
2 3
3

• However they do so on ‘typical vectors’ |m| = O(nη)$ n

L∗2,3 :
1 1 1 1 1 1 1 2 2 3
2 2 2 2 3 3
3 3 3

−→ O(nη)
1 1 1 1 1 1 1 2 3 3
2 2 2 2 3 3
3 3 3

+ O(n)
1 1 1 1 1 1 1 2 2 3
2 2 2 3 3 3
3 3 3

After normalisation first term drops and we get an a∗i,j creation operator

L∗2,3/
√

n : |{m1,2, m1,3, m2,3}, λ〉
∼='−→

√
m2,3 + 1 |{m1,2, m1,3, m2,3+1}, λ〉 !!

• Asymptotically, Li,j/
√

n acts only on row i and they all commute with each other...

We have convergence to a tensor product of harmonic oscillators (ai,j , a∗i,j) in the vacuum

semi-standard Young tableau t

I Typical vectors are ≈ orthogonal

If |m|, |l| = O(nη) with η < 2/9 then

|〈m, λ | l, λ〉| = O(n−c(η))

Structure of πλ:

• ‘Ladder operators’ Li,j = πλ(Ei,j), L∗i,j = πλ(Ej,i) for 1 ≤ i < j ≤ d don’t act as ladder...

L∗2,3 :
1 1 2
2 2
3

−→
1 1 3
2 2
3

+ 2
1 1 2
2 3
3

• However they do so on ‘typical vectors’ |m| = O(nη)$ n

L∗2,3 :
1 1 1 1 1 1 1 2 2 3
2 2 2 2 3 3
3 3 3

−→ O(nη)
1 1 1 1 1 1 1 2 3 3
2 2 2 2 3 3
3 3 3

+ O(n)
1 1 1 1 1 1 1 2 2 3
2 2 2 3 3 3
3 3 3

After normalisation first term drops and we get an a∗i,j creation operator

L∗2,3/
√

n : |{m1,2, m1,3, m2,3}, λ〉
∼='−→

√
m2,3 + 1 |{m1,2, m1,3, m2,3+1}, λ〉 !!

• Asymptotically, Li,j/
√

n acts only on row i and they all commute with each other...

We have convergence to a tensor product of harmonic oscillators (ai,j , a∗i,j) in the vacuum

typical Young tableau t

I Approximate ladder operators

Structure of πλ:

• ‘Ladder operators’ Li,j = πλ(Ei,j), L∗i,j = πλ(Ej,i) for 1 ≤ i < j ≤ d don’t act as ladder...

L∗2,3 :
1 1 2
2 2
3

−→
1 1 3
2 2
3

+ 2
1 1 2
2 3
3

• However they do so on ‘typical vectors’ |m| = O(nη)$ n

L∗2,3 :
1 1 1 1 1 1 1 2 2 3
2 2 2 2 3 3
3 3 3

−→ O(nη)
1 1 1 1 1 1 1 2 3 3
2 2 2 2 3 3
3 3 3

+ O(n)
1 1 1 1 1 1 1 2 2 3
2 2 2 3 3 3
3 3 3

After normalisation first term drops and we get an a∗i,j creation operator

L∗2,3/
√

n : |{m1,2, m1,3, m2,3}, λ〉
∼='−→

√
m2,3 + 1 |{m1,2, m1,3, m2,3+1}, λ〉 !!

• Asymptotically, Li,j/
√

n acts only on row i and they all commute with each other...

We have convergence to a tensor product of harmonic oscillators (ai,j , a∗i,j) in the vacuum

I Approximate isometry

Vλ : |m〉 7−→
⊗

1≤j<k≤d

|mj,k〉



Application of LAN: asymptotically optimal learning of qubit states

I Helstrom measurement: optimal discrimination between 2 known states ρ0

and ρ1 with prior probabilities (π0, π1)

M0 := [π0ρ0 − π1ρ1]+ M1 := [π0ρ0 − π1ρ1]−

I Optimal error:

π0Tr(ρ0M1) + π1Tr(ρ1M0) =
1

2
(1− Tr(|π0ρ0 − π1ρ1|))

I Qubit learning:
I given n labelled qubits drawn from unknown ρ0 and ρ1 with probabilities

(π0, π1)

I task: learn the optimal measurement M to be used for future state
discrimination

I Using LAN it can be shown that the optimal solution is not the plug-in
estimator of M based on optimal state estimation, but a joint
measurement of the training set ρ⊗n0

0 ⊗ ρ⊗n1
1

[M. Guta, W. Kotlowski, N.J.P. 2010]
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System identification for quantum Markov processes

I Quantum Markov chains

I Mixing chains

I LAN and quantum Fisher information of the output state

I LAN for simple measurements on the output



Quantum Markov chains

Optical cavity Incoming atomsOutgoing atoms

|ψ〉|ψ〉|ψ〉|ψ〉|ψ〉 ⊗ |ξ〉

I Examples: quantum optical networks, atom maser, solid state cavity
QED...

I Dynamics: unitary ‘scattering’ of atoms by cavity

U : M(Cd ⊗ Ck)→ M(Cd ⊗ Ck)

I Discrete time version of quantum Markov processes driven by white noise

I Closely related to Matrix Product States (MPS) and Channels with
Memory

[Kümmerer, J.F.A. 1985] [Fannes, Nachtergale and Werner C.M.P. 1992] [Kretschmann and Werner, P.R. A 2005]



Examples

I Jaynes-Cummings coupling

U : C2 ⊗ `2(N)→ C2 ⊗ `2(N)

U = exp [α(σ− ⊗ a∗ + σ+ ⊗ a) + iβσz + iγa∗a]

I Continuous-time quantum Markov process

Ut : Cd ⊗F(L2(R+))→ Cd ⊗F(L2(R+))

dUt =

{
L⊗ dA∗t − L∗ ⊗ dAt −

1

2
L∗L dt − iH dt

}
Ut (QSDE)



Hilbert space evolution

I ‘system’ Cd , ‘noise unit’ Ck , interaction unitary U

CkCkCkCkCk CkCk

Cd

⊗⊗⊗
⊗

⊗⊗⊗

S

U

I One step joint evolution: W = S ◦ U

I Output state after n steps

|ψn〉 := U−1 ◦ · · · ◦ U−n |ξ〉 ⊗ |ψ〉⊗n ∈ Cd ⊗
(
Ck
)⊗n
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Markov (transition) semigroup

I T : M(Cd)→ M(Cd) describes the ‘reduced’ evolution of the system

X 7→ T (X ) :=
〈
ψ | U−1 (X ⊗ 1) U

∣∣∣ψ〉

⊗⊗⊗
⊗

⊗⊗⊗

X

1111 1 1 1

I after n steps

X 7→ Tn(X ) :=
〈
ψ⊗n

∣∣ Û−n (X ⊗ 1) Ûn
∣∣∣ ψ⊗n

〉
= T n(X )
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∣∣∣ ψ⊗n

〉
= T n(X )



Markov (transition) semigroup

I T : M(Cd)→ M(Cd) describes the ‘reduced’ evolution of the system

X 7→ T (X ) :=
〈
ψ | U−1 (X ⊗ 1) U

∣∣∣ψ〉

⊗⊗⊗
⊗

⊗⊗⊗

X

1111 1 1 1

U−1
1 · U1U−1 · U

〈ψ| · |ψ〉

I after n steps

X 7→ Tn(X ) :=
〈
ψ⊗n
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∣∣∣ψ〉

⊗⊗⊗
⊗

⊗⊗⊗ 1111 1 1 1

U−1 · U

〈ψ| · |ψ〉

T (X)

I after n steps

X 7→ Tn(X ) :=
〈
ψ⊗n

∣∣ Û−n (X ⊗ 1) Ûn
∣∣∣ ψ⊗n

〉
= T n(X )



Markov (transition) semigroup

I T : M(Cd)→ M(Cd) describes the ‘reduced’ evolution of the system

X 7→ T (X ) :=
〈
ψ | U−1 (X ⊗ 1) U

∣∣∣ψ〉

⊗⊗⊗
⊗

⊗⊗⊗ 1111 1 1 1

U−1 · U

〈ψ| · |ψ〉

T (X)

〈ψ| · |ψ〉

I after n steps

X 7→ Tn(X ) :=
〈
ψ⊗n

∣∣ Û−n (X ⊗ 1) Ûn
∣∣∣ ψ⊗n

〉
= T n(X )



Markov (transition) semigroup

I T : M(Cd)→ M(Cd) describes the ‘reduced’ evolution of the system

X 7→ T (X ) :=
〈
ψ | U−1 (X ⊗ 1) U

∣∣∣ψ〉

⊗⊗⊗
⊗

⊗⊗⊗ 1111 1 1 1

〈ψ| · |ψ〉〈ψ| · |ψ〉

T 2(X)

I after n steps

X 7→ Tn(X ) :=
〈
ψ⊗n

∣∣ Û−n (X ⊗ 1) Ûn
∣∣∣ ψ⊗n

〉
= T n(X )



Mixing (ergodic) quantum Markov chain

I Transition operator T : M(Cd)→ M(Cd)

T (X ) :=
〈
ψ | U† (X ⊗ 1) U

∣∣∣ψ〉

I Mixing Markov chain (transition operator T )

I T (X ) = X if and only if X = α1

I All other eigenvalues λ satisfy |λ| < 1.

I Convergence to equilibrium

If T is mixing then there exists a unique stationary state ρ∞ on M(Cd)
and

lim
n→∞

T n
∗ (σ) = ρ∞, for all initial states σ

I Classical analogue

Finite state irreducible aperiodic chain (Perron-Frobenius Therem)



L.A.N. for (one parameter) coupling constant

I Let Uθ = exp(iθK) with unknown θ, and assume that T is mixing.

I Let |ψu,n〉 be the output state (statistical model)

|ψu,n〉 :=
(
S ◦ Uθ0+u/

√
n

)n ∣∣ξ ⊗ ψ⊗n〉
Theorem

1. the quantum Fisher information scales (asymptotically) linearly

1

n
Hn(θ0)→ H

2. |ψu,n〉 is asymptotically normal, i.e

lim
n→∞
〈ψu,n |ψv,n〉 = 〈

√
H/2u |

√
H/2v〉

where {|
√

H/2u〉 : u ∈ R} is the quantum Gaussian shift with Fisher info
H.



Fisher information = variance of generator

I The asymptotic Fisher information is H(θ0) = 4V (K ,K) with ‘variance’

V (K ,K) := E
(

K 2
)

+ 2E
(

K ◦ (Id− Tθ0 )−1 (L)
)

where

I E(X ) := Tr
(
Uθ0

ρ∞ ⊗ |ψ〉〈ψ|U†θ0
X
)

is the stationary state at θ0

I L := 〈ψ|K |ψ〉 is the conditional expectation of K onto the system

I Interpretation:
I limit model is family of coherent states |

√
H/2u〉 = exp(iuG(K))|0〉

I for optimal estimation of u measure conjugate variable of G(K)



Fisher information = variance of generator

I The asymptotic Fisher information is H(θ0) = 4V (K ,K) with ‘variance’

V (K ,K) := E
(

K 2
)

+ 2E
(

K ◦ (Id− Tθ0 )−1 (L)
)

where

I E(X ) := Tr
(
Uθ0

ρ∞ ⊗ |ψ〉〈ψ|U†θ0
X
)

is the stationary state at θ0

I L := 〈ψ|K |ψ〉 is the conditional expectation of K onto the system

I Interpretation:
I limit model is family of coherent states |

√
H/2u〉 = exp(iuG(K))|0〉

I for optimal estimation of u measure conjugate variable of G(K)



Idea of the proof

1. Reduce to a semigroup property

〈ψu,n | ψv,n〉 =
〈
ξ
∣∣∣T n

u/
√
u,v/
√

n
(1)
∣∣∣ ξ〉 ,

where Tu,v is a continuos family of contractions on M(Cd ) such that T0,0 = T .

2. Expand

Tu/
√
u,v/
√
n = T + 1√

n
T1 + 1

n
T2 + o(n−1) and decompose M(Cd ) = C1⊕L s. t.

I T (L) ⊂ L and T is a strict contraction on L
I T1(L) ⊂ L and T1(1) ∈ L

3. Use continuity and the spectral gap to expand the heighest
eigenvector/eigenavalue of Tu/

√
n,v/
√

n

T n
u/
√
n,v/
√
n
(1) ≈ (1 + λ2/n)n1→ exp(λ2)1

where

λ2 =
[
T2 + T1 ◦ (Id− T )−1 ◦ T1

]
1,1



Asymptotic normality for simple measurements

Optical cavity Incoming atoms

|ψ〉|ψ〉|ψ〉|ψ〉|ψ〉 ⊗ |ξ〉

A(1)A(3) A(2)

I Output state |ψu,n〉 :=
(
S ◦ Uθ0+u/

√
n

)n ∣∣ξ ⊗ ψ⊗n
〉

I Measure the same observable A with Eθ0 (A) = 0 on each atom

Theorem

1. The Central Limit Theorem holds:

Ān :=
1√
n

n∑
k=1

A(k)
D−→ N(uµ(A),V (A,A))

2. Estimator ûn := Ān/µ(A) with variance (inverse Fisher information)

E
[
(ûn − u)2

]
→ V (A,A)

µ(A)2



Asymptotic normality for simple measurements

Variance and ‘speed’ of Ān

V (A,A) := E
(

A2
)

+ 2E
(

A⊗ (Id− Tθ0 )−1 (B)
)

µ(A) := E
(

i [K ,A⊗ 1 + 1⊗ (Id− Tθ0 )−1 (B)]
)

where B := 〈ψ|U†θ0
AUθ0 |ψ〉



Example: X-Y (spin-spin) interaction

Unitary interactions

U = exp(iθ(σx ⊗ σx + σy ⊗ σy ))

Input state

|ψ〉 = a|0〉+ b|1〉

Quantum Fisher information

H = 16|ab|4
(1−cos θ0)(1−cos θ0+4|ab|2 cos θ0)

Spin Measurement

in direction ~n = (nx , ny , nz)

Classical Fisher information

I (X ) = µ(X )2/σ2(X )

Singular point θ0 = 0: quantum Fisher information scales as n2 !



Outlook

I Quantum Engineering needs Statistics!

I A variety of quantum statistical models are asymptotically normal

I Work in progress:
I extension to continuous time and multiple parameters

I general quantum Central Limit Theorem / Large Deviations

I link to systems theory (engineering) and adaptive control

More information:

Quantum Statistics course (10 h)

http://maths.dept.shef.ac.uk/magic/course.php?id=181

Valparaiso Winter School on Stochastic Processes (6 h)

http://www.maths.nottingham.ac.uk/personal/pmzmig/preprints/Valparaiso.pdf

Lunteren Stochastics Meeting lectures (2h)

http://www.maths.nottingham.ac.uk/personal/pmzmig/Lunteren.pdf
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