Exercise on MaxLik
problems

By Zdenék Hradil



1. Radon and inverse Radon transformation

Derive the analytical expression for Radon and Inverse Radon
Transformations.

Geometry: Projection along the line
xcos@+ysinf—s=0

Radon transformation

g(s, 0) = fﬁz f(x,y) 6(x cos 8 + y sin 6 —s)dxdy

For obtaining Radon transformation as a Ray sum,
define rotated system of coordinates

) cos 8 sin O |/
—sin 6 cos 0 ()’)



Hence x=y5cos 0 —usin 0 /5(8)ds: 1
y=ssin 6+ u cos 0

Radon transformation as a Ray sum

g(s, 0)=f f(scos @—usin 8,ssin 0+ u cos 0) du

Inverse Radon transformation follows directly from the definition
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2. Statistical interpretation of measured results

Assume the measurement of quadrature operator in some
(unknown) coherent quantum state with real amplitude. The
measurement was done 3times and the values x;,x,, and x5 have
been detected. Could the signal come from vacuum state? What
could be the best guess??

Hint: Assuming the normalization x =(1/2)2(a + a*), the
probability density reads

p) = % expl—(z — V20)?



« Solution: The likelihood for the measured state being in coherent
state is

Hence the ratio is

L= HGXP[—(I‘@' — V20)?]

L/L£(0) = exp[2Vv/2|c| Zazz — 2n|a?|]

= exp|—2n]||a| — %_93 exp( sz /n)



Moral: Yes, indeed, data might come almost from any state but
sometimes it is not too much likely that it really happened. For
particular values x = 1,2,3 the optimal state is about 106 times
more likely than the vacuum state.



3. Fisher information for the diffraction on the slit

« Derive the uncertainty principle and Fisher information from
the model of 1D diffraction on the slit. Discus the “difference"
between the measurement and estimation



Motivation: Diffraction on the slit

a[ ................ =
/
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Detection on the screen may be used as geometrical
estimate for impulse since © = §£/d and p, =h sin@/A




Diffraction continues 1 ..

‘The uncertainty is given by wave theory

P(ulv) =1L sinc?(u- v); p=€ (ma/Ad), v = p, a/2h

-Straightforward but wrong argumentation based on the first
minimum of sinc function gives

A x =a/2,Ap,=(h/a) and therefore Ax Ap,~h/2 |

*But the correctly calculated variance of sinc? function gives the
infinite width !l

*The estimate of p, based on single event will be very uncertain !l

*The remedy is o accumulate the events and relate the estimate to
some collective variable (=centre of mass of the interference pattern)
‘Proper estimation theory should be formulated with the mathematical
statistics.
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Diffraction continues 2

* The prediction should be based on some posterior distribution
P(v)post = TT,, p(ulv)N* = exp[Z, N, log p(ulv) 1.
Here Vv is our estimate of some true value V., which is hidden in

detected data |
‘Note: product of detected probabilities is denoted as likelihood L
and its logarithm in exponential is called log-likelihood log L

-Significant sampling (N large) ~ N= N p(u|Vypye)
-Gaussian approximation of log L as the expansion near v,
2 Nyog p(ul v) ~ N 2, p(| Vi) log p(u|v) ~

(lsf Term) N Z p(U|V‘rr‘ue) |Og p(l-" VTr'ue)
(2" term)  + N Z P Virie) 0u10G PHIV) |5rue (V-Vinge)
(3r'd Term) N Zp P(U|Vfrue) bZ |09 p(“|v)|1'r'ue (V VTrue)Z
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Diffraction continues 3

1st term is enTr'opy S = Z P(UIVTr‘ue) |°9 P(Ul VTrue)
2nd term is zero since Zu p(ulvme) d log p(uIV)|spye =

Z b p(“|v)|frue (V VTr'ue) = (V V‘rr'ue) b 1= 0

3rd term similarly gives the only nonzero contribution

F= NZ p(ulvme)[b log p(H V) 4rge 12

= NZ P(HIVTpue) [b p(UIV)l‘rr‘ue]Z
F = Flsher' information

L ~ exp(S) exp[ - 7 F (V-V;p0)? ]

This means that parameter estimation is done with the

precision 1/F |




Diffraction continues 4

Believe or not Fisher information is remedy for uncertainty
relations on the slit!

(A x)? =a2/12
(A v)?=(a/2h)? (A p,)?> and F= 4t [ dy [0, sinc p]?=4/3
and therefore Ax A p,=h/2|

This is not an accident but a consequence of Cramer-Rao inequalities
(N=1):

Unbiased estimator : 2, p(ulVire) (V - Virg) =0 /Qvypy,
2 OV, e P Vire) (V - Vin) = 1 /Cauchy-Schwarz inequality

zu [p(UIVTr‘ue)] e bv‘rr‘ue p(UIVTr‘ue) [p(UIVTr‘ue)] 1/ (V - V‘rr‘ue) =1

(Av)? F > 1
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Some pedagogical remarks ...

AA AB > 3 |[A,B]]

*The meaning of Heisenberg uncertainty principle is
pedagogically confusing. Does it mean the constraints on
measurement? Which one? Both?
‘No, this is the constraint on possible quantum states (see
the derivation or see the condition for covariance matrix).
‘Heisenberg uncertainty is weaker than Cramer-Rao
inequality

(Av)? F2 1

-Cramer-Rao can be formulated even for simultaneous
estimation (measurement) of several parameters. 7




4. MaxLik solution

* Derive the condition for MaxLik extremal state.

« Hint: Use the inequality between geometric and arithmetic
means



Log-likelihood for generic measurement p; = Tr(pA.)

L(p) = TT; p;™
Normalization Tr(p) = 1
Constraint p20

Maximize the likelihood !!!
Jensen inequality (inequality between geometric and arithmetic

meanS) ﬂi (X,/G,)f' < Zi fi xi/ai

L(p)"N=TT; p;fi< (TT; ') Tr(R p)
R=2;(f/a) A

Let us chose for extreme a = Tr(pA)

Extremal equation Rp=p



Easy derivation

Differentiate formally the Log-likelihood with the constraint

log L(p) - Zi N; log pj(p) - A Tr(p) /bpk|
2, Ni/PJ’(P) (A |k><I| - A3, |k><I|=0 /p
2 Ni/pi(e) Aip=Ap /Trp =1
Rp=p
Other hints:
p=2; A lo<ol, ol [ <olA; lo>] = A lo>
p= QO 0 O Tr(A; QQT)= A N

(Log)-likelihood is convex functional over the convex manifold of
density matrices = convex optimization




5. Normalization of the likelihood

Convince yourself that likelihood should be properly normalized.
Conclude the consequences if it is not the case. Is the
measurement in James et. al. , PRA 64, 052312 (2001) properly

normalized? Calculate the corresponding G operator. How would

you correct the paper James et al., Measurement of qubits,
PRA 64, 052312 (2001)?

Hint: Assume the measurement of single gbit corresponding just
to single projections along +x, +y and +z axis of Stern-Gerlach
apparatus. Such measurement is not complete nor normalized to
1 (show !). If non-normalized likelihood is used for a generic
mixed state, then MaxLik estimate always tend to be a pure
state ..



v |Mode 1|Mode 2 hl q1 h2 qs
1| H) | [H [45° 0 45° 0
2| |H) V) [45° 0 0 O
31 V) vy | 0 0 0 0
41 V) H)Y | 0 0 45° 0
5 |R) H) [22.5° 0 45° 0
6| [R) | [V) [225° 0 0O O
71 D) | V) [225°45° 0 0
8| DY | [H) [22.5°45° 45° 0
9 D) | |R) [22.5° 45° 22.5° 0
10| |D) D) |22.5° 45° 22.5° 45°
11| |R) D) [22.5° 0 22.5° 45°
12| [H) D) | 45° 0 22.5° 45°
13| V) D) | 0 0 22.5°45°
14 V) LY | 0 0 22.5°90°
15 [H) L) | 45° 0 22.5° 90°
16| |R) L) |22.5° 0 22.5° 90°
Table 1

TABLE 1: The tomographic analysis states used in our experiments. The number of coincidence counts measured
in projections measurements provide a set of 16 data that allow the density matrix of the state of the two modes to
be estimated. We have used the notation |D) = (|H) + |V)) /v/2, |L) = (JH) +i|V)) /v/2 and |R) = (|H) —i|V)) /V/2.
Note that, when the measurement are taken in the order given by the table, only one waveplate angle had to be
changed between each measurement.



6. Resource analysis for tomography, quantum computing and
diagnostics with 5 g-bits

*To control the quantum system means to control all relevant errors....

‘Pure state in dimension d: 2d -1 real parameters

Estimation is not a convex problem...

Density matrix d?-1 real parameters

Fisher info matrix: 3(d?-1)(d?-2) real parameters

*CP maps: d?(d?- 1) real parameters

Fisher info matrix for CP maps: $d? (d?- 1)(d* - d? -1) real parameters

Quantum computation with 5 gbits: d = 2° = 32
Quantum state: ~ 103 parameters

Fisher info: ~ 10° parameters

CP maps: ~ 10° parameters

Fisher info of CP maps: ~ 10'2 parameters




7. Fisher information in quantum interferometry

Considering the model of Holland, Burnett with the
interferometer triggered by two n-Fock states, investigate the
resolution limit and discuss the strategy when optimal phase
resolution can be achieved.

./\/\

Detected signal difference: g
(np=nz=r)

[n2) ¢
Detected statistics .
(associated Legendre polynomials): [n1)

= (T_Q)! 9(cos 0)]? roximation ~ r0)]?
P(2q|0) = (r+q)![Pr( 0)] ﬁ)ﬁpqzo tion  P(0[0) ~ [Jo(r0)]



Phase estimation after “single” detection is not a good idea since

drx?JE () 1
x
dxJé(z) logr

Optimum: repeatn =4

N =120




