
Exercise on MaxLik 
problems 

By Zdeněk Hradil 



1. Radon and inverse Radon transformation 

•  Derive the analytical  expression for  Radon and Inverse Radon 
Transformations. 
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D distribution and our problem is called reconstruc-
tion of distribution fro”Äprojection.

Radon transformation
The following theorem by Radon shows that image
reconstruction from projection is possible:

The value of a 2-D function at an arbitrary point is
uniquely obtained by the integrals along the lines
of all directions passing the point.

This theorem guarantees that a 2-D object (equivalent
to a transparence distribution) is reconstructed from
projections obtained by the rotational scanning
shown in the previous section.

The Radon transformation shows the relationship be-
tween the 2-D object and the projections. Let us con-
sider a coordinate system shown in Fig. 2. The func-
tion g(s, ) is a projection of f(x, y) on the axis s of 
direction. The function g(s, ) is obtained by the inte-
gration along the line whose normal vector is in  di-
rection. The value g(0, ) is defined that it is obtained
by the integration along the line passing the origin of
(x, y)-coordinate.

Since the points on the line whose normal vector is in
 direction and passing the origin of (x, y)-coordinate

satisfy

!  y
x = tan ( + 2 ) = – cos

sin , (1)

we get

!  x cos + y sin = 0 . (2)

The integration along the line whose normal vector is
in  direction and that passes through the origin of (x,
y)-coordinate means the integration of f(x, y) only at
the points satisfying Eq. (2), g(0, ) is expressed us-
ing the -function as follows:

!  g(0, ) = f (x, y) (x cos + y sin )dxdy
–

. (3)

Similarly, it follows from Eq. (2) that the line whose
normal vector is in  direction and whose distance
from the origin is s satisfy the following equation:

!  (x – s cos ) cos + (y – s sin ) sin = 0 , (4)

i. e.
!  x cos + y sin – s = 0 , (5)

since this line is obtained by moving the line passing
through the origin by scos  in x direction and ssin !in
y direction. Thus similarly to Eq. (3) we get

!  g(s, ) = f (x, y) (x cos + y sin –s)dxdy
– .   (6)

The Eq. (6) is called Radon transformation from the
2-D distribution f(x, y) to the projection g(s, ).

Ray-sum
Although the Radon transformation expresses the
projection by the 2-D integral on the x, y-coordinate,
the projection is more naturally expressed by an inte-
gral of one variable since it is a line integral. Let us
consider rewriting Eq. (6) to an integral of one vari-
able.

Since the (s, u)-coordinate along the direction of pro-
jection is obtained by rotating the (x, y)-coordinate by

, the relationship between two directions is ex-
pressed as follows:

!  s
u =

cos sin
– sin cos

x
y . (7)

Thus we get the following relationship between (s, u)
and (x, y):

Fig. 2. Radon transformation.
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Geometry: Projection along the line 	
  	
  

Radon transformation 

For obtaining Radon transformation as a Ray sum,   
define rotated system of coordinates 
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Hence   

Radon transformation as a Ray sum 

Inverse Radon transformation follows directly  from the definition  
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The projection theorem states that

the one-dimensional Fourier transform of the Ra-
don transform g(s, ) for variable s, denoted
G ( ), and
the cross-section of the two-dimensional Fourier
transform of the object f(x, y), sliced by the plane
at  with the fx-axis and perpendicular to the (fx,
fy)- plane, denoted F(fx, fy),
are identical, i. e.

 ! G ( ) = F( cos , sin ) . (14)

Proof of the theorem is as follows: The one-dimen-
sional Fourier transform of the Radon transform g(s,

) for variable s, denoted G ( ), is expressed as fol-
lows:

 ! G ( ) = g(s, )exp ( – i2 s)
–

ds . (15)

Substituting the definition of ray-sum, Eq. (13), into
Eq. (15), we get

 ! G ( )

= f (s cos – u sin , s sin + u cos )
–

" exp ( – i2 s)dsdu
. (16)

We get from the substitution of the variables (x, y)
into (s, u), using the relationship dxdy = dsdu men-
tioned above,

 ! G ( )

= f (x, y)exp ( – i2 (x cos + y sin ))
–

dxdy

= f (x, y)exp ( – i2 {( cos )x + ( sin ) y})
–

dxdy

= F( cos , sin )

.

(17)

Reconstruction by Fourier transformation
method
The projection theorem indicates that the projection
at an angle  yields one cross-section of F(fx, fy), the
Fourier transform of the original object. Thus the pro-
jections for all  yields the whole profile of F(fx, fy).
The inverse Fourier transformation of F(fx, fy) ob-
tained above yields the full reconstruction of f(x, y).

This reconstruction method is called Fourier trans-
formation method.

Although this method is theoretically the simplest of
various reconstruction methods, it is practically not
popular by the following reason.

Obtaining fluoroscopic images for all  is practically
impossible; they are obtained at an interval of . The
Fourier transformation of g(s, ) is calculated practi-
cally by computers using the discrete Fourier trans-
formation with sampled s. Thus F(fx, fy) is obtained
only at discrete points located radially on (fx, fy)-
plane. The discrete inverse Fourier transformation of
F(fx, fy) requires F(fx, fy) at square lattice points. Since
the radially located points and the lattice points are
not generally synchronized, the values of F(fx, fy) at
the lattice points have to be estimated from the values
at the radially located points by some interpolation.
The error by the interpolation in the frequency do-
main can yield an artifact, which is a noise not exist-
ing in the original image but caused by the process-
ing, spread over the whole image. The artifact causes
a severe misjudgment in image-aided medical diag-
nosis, since such diagnosis should find an object that
should not be normally observed, for example a tu-
mor.

References
A. K. Jain, Fundamentals of Digital Image Processing.
Imaginis – How Does CT Work? (http://
www.imaginis.com/ct-scan/how_ct.asp)

Computed Tomography (CT) - Head (http://
www.radiologyinfo.org/content/

ct_of_the_head.htm)
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!  s = x cos + y sin
u = – x sin + y cos , (8)

!  x = s cos – u sin
y = s sin + u cos . (9)

Substituting Eq. (9) into Eq. (6), it follows that the ar-
gument of the -function is

!  x cos + y sin –s
= (s cos – u sin ) cos + (s sin + u cos ) sin – s
= s (cos2 + sin2 ) – u sin cos + u cos sin – s
= 0

.

(10)

Since the translation from the (x, y)-coordinate to the
(s, u)-coordinate yields no expansion or shrinkage,
we get dxdy = dsdu. Thus we get from Eq. (6)

!  g(s, )

= f (s cos – u sin , s sin + u cos ) (0) dsdu
–

.

(11)

Since the -function in Eq. (6) is a function of vari-

able s, we get

  ! (0) ds
–

= 1 . (12)

It follows from the above that the Radon transforma-
tion g(s, ) in Eq. (6) is translated into the following
integral of one variable u,

!  g(s, ) = f (s cos – u sin , s sin + u cos ) du
–

.

(13)

This equation expresses the sum of f(x, y) along the
X-ray pass whose distance from the origin is s and
whose normal vector is in  direction. This sum, g(s,

) is called ray-sum.

Projection theorem
The image reconstruction from projection is equiva-
lent to the inverse Radon transformation, i. e. obtain-
ing f(x, y) from given g(s, ) for 0! !  <! *). An im-
portant key for solving this problem is projection
theorem, explained in the following.

Fig. 3. Projection theorem.
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*) Note that the range is not 0! ! !<!2 .
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2. Statistical interpretation of measured results 

•  Assume the measurement of quadrature operator  in some 
(unknown) coherent quantum state with real amplitude. The 
measurement was done 3times  and  the values x1,x2, and x3 have 
been detected.  Could the signal come from vacuum state? What 
could be the best  guess?? 

•  Hint: Assuming the normalization x =(1/2)1/2(a + a+), the 
probability density reads 

 
 p(x) =

1√
π
exp[−(x−

√
2α)2]



•  Solution: The likelihood for the measured state being in  coherent 
state is 

 
 
 

Hence the ratio is   

L =
�

i

exp[−(xi −
√
2α)2]

L/L(0) = exp[2
√
2|α|

�

i

xi − 2n|α2|]

= exp[−2n[|α| −
�

i xi√
2n

]2 exp((
�

i

xi)
2/n)



Moral: Yes, indeed,  data might come almost from any state  but 
sometimes it is not too much likely that it really happened.  For 
particular  values x =  1,2,3   the optimal state  is about 106 times 
more likely than the vacuum state.   



3. Fisher information for the diffraction on the slit 

•  Derive the uncertainty principle and  Fisher information from 
the model of 1D diffraction on the slit. Discus the “difference”  
between the measurement and estimation 



Motivation: Diffraction on the slit  
 

Detection on the screen may be used as geometrical 
estimate for impulse since θ = ξ/d and px =h sinθ/λ 



Diffraction continues 1 … 
 

• The uncertainty is given by wave theory 
 P(µ|ν) =π-1 sinc2(µ- ν);  µ=ξ (πa/λd), ν = px a/2ħ 
 
• Straightforward but wrong argumentation based on the first 
minimum of sinc function  gives  
Δ x =a/2 , Δ px = (h/a)  and  therefore Δx Δ px ~ h/2  !  
 
• But the correctly calculated variance  of sinc2  function gives the 
infinite width !! 
• The estimate of px based on single event will be very uncertain !!! 
• The remedy is to accumulate the events and relate the estimate to 
some collective variable (=centre of mass of the interference pattern) 
• Proper estimation theory  should be formulated with the mathematical 
statistics.  





Diffraction continues 2  … 
 

• The prediction should be based on some posterior distribution 
 P(ν)post = Πµ  p(µ|ν)Nµ = exp[ΣµNµ log p(µ|ν) ]. 
Here ν is our estimate  of  some true value νtrue, which is hidden in 
detected data µ 
• Note: product of detected probabilities is denoted as  likelihood L  
and its logarithm in exponential is called log-likelihood log L 
• Significant sampling (N large)      Nµ= N p(µ|νtrue) 
• Gaussian approximation of log L as the expansion near νtrue : 
Σµ Nµlog p(µ| ν) ~  N Σµ p(µ|νtrue) log p(µ|ν) ~  
(1st term)    N Σµ p(µ|νtrue) log p(µ| νtrue)  
(2nd term)  + N Σµ  p(µ|νtrue)  ∂νlog p(µ|ν)|true  (ν-νtrue)  
(3rd term)  + ½ N Σµ p(µ|νtrue) ∂2

ν log p(µ|ν)|true  (ν-νtrue)2  



Diffraction continues 3  … 
 

1st term is entropy  S =  Σµ p(µ|νtrue) log p(µ| νtrue)  
2nd term is zero since  Σµ  p(µ|νtrue)  ∂νlog p(µ|ν)|true  = 
Σµ ∂ν p(µ|ν)|true  (ν-νtrue) = (ν-νtrue) ∂ν 1 = 0 
 
3rd term similarly gives the only nonzero contribution   
   F =   N Σµ p(µ|νtrue) [ ∂ν log p(µ|ν)|true ] 2  

     =  N Σµ p(µ|νtrue)-1 [ ∂ν p(µ|ν)|true ] 2  
  F = Fisher information 

 
 L ~ exp(S) exp[ - ½ F (ν-νtrue)2 ] 

 
This means that parameter estimation is done with the 
precision 1/F ! 



Diffraction continues 4  … 
 

Believe or not Fisher information is remedy for uncertainty 
relations on the slit! 
(Δ x)2 =a2/12  
(Δ ν)2

 = (a/2ħ)2 (Δ px)2   and  F=  4π-1∫dµ [∂µ sinc µ]2 =4/3 
and  therefore Δx Δ px = ħ/2 !  
 
This is not an accident but a consequence of Cramer-Rao inequalities 
(N=1):   
Unbiased estimator :  Σµ  p(µ|νtrue) (ν - νtrue) = 0     /∂νtrue 

 Σµ ∂νtrue p(µ|νtrue) (ν - νtrue) =  1  /Cauchy-Schwarz inequality 

 Σµ [p(µ|νtrue
)] -1/2 ∂νtrue p(µ|νtrue) [p(µ|νtrue

)] 1/2 (ν - νtrue) =  1   
    
   (Δν)2  F ≥  1 



Some pedagogical remarks … 
   

   ΔA ΔB ≥ ½ |[A,B]| 
 
• The meaning of Heisenberg uncertainty principle is  
pedagogically confusing.  Does it mean the constraints on 
measurement? Which one? Both? 
• No, this is the constraint  on possible quantum states (see 
the derivation or see the condition for covariance matrix). 
• Heisenberg uncertainty is weaker than Cramer-Rao 
inequality   
    (Δν)2  F ≥  1 
 
• Cramer-Rao can be formulated even for simultaneous 
estimation (measurement) of several parameters. 



4. MaxLik  solution  

•  Derive the condition for MaxLik extremal state. 
•  Hint: Use the inequality between geometric and arithmetic 

means  



Log-likelihood for generic measurement pi = Tr(ρAi) 
   L(ρ)  = Πi pj

Ni 

Normalization   Tr(ρ) = 1 
Constraint    ρ ≥ 0   
Maximize the likelihood !!! 
Jensen inequality (inequality between geometric and arithmetic 
means)  Πi (xi/ai)fi ≤  ∑i fi xi/ai 
 
L(ρ)1/N = Πi pj

fi ≤ (Πi ai
fi) Tr(R ρ)  

   R = ∑i (fi/ai) Ai  
Let us chose for extreme  ai = Tr(ρAi) 
 
Extremal equation  R ρ = ρ 



Differentiate formally  the Log-likelihood with the  constraint 
   
 log L(ρ)  = ∑i Ni log pj(ρ) – λ Tr(ρ)            /∂ρkl 
 ∑i Ni/pj(ρ)   (Ai)kl  |k><l| – λ δkl |k><l| = 0       /ρ 
 ∑i Ni/pj(ρ) Ai  ρ = λ ρ                   /Trρ = 1	


   R ρ = ρ 

Other hints:  
ρ = ∑i λi |φi><φi|, ∂<φi|  [ <φi|Aj |φi>] = Aj |φi> ; 
ρ = ΩΩ†                      ∂ Ω†  Tr(Aj ΩΩ† ) = Aj Ω 
 
 
(Log)-likelihood is convex functional over the convex manifold of 
density matrices  = convex optimization 

Easy derivation 



5. Normalization of the likelihood 

•  Convince yourself that likelihood should be properly normalized. 
Conclude the consequences if it is not the case.  Is the 
measurement in  James et. al. , PRA 64, 052312 (2001) properly 
normalized? Calculate the corresponding G operator. How would 
you correct   the paper James et al., Measurement of qubits, 
PRA 64, 052312 (2001)? 

•  Hint: Assume the measurement of single qbit corresponding just 
to single projections along  +x, +y and +z axis of Stern-Gerlach 
apparatus. Such measurement is not complete nor normalized to 
1 (show !). If non-normalized likelihood is used for a generic 
mixed state, then MaxLik estimate always  tend to be a pure 
state …   



ν Mode 1 Mode 2 h1 q1 h2 q2

1 |H〉 |H〉 45o 0 45o 0
2 |H〉 |V〉 45o 0 0 0
3 |V〉 |V〉 0 0 0 0
4 |V〉 |H〉 0 0 45o 0
5 |R〉 |H〉 22.5o 0 45o 0
6 |R〉 |V〉 22.5o 0 0 0
7 |D〉 |V〉 22.5o 45o 0 0
8 |D〉 |H〉 22.5o 45o 45o 0
9 |D〉 |R〉 22.5o 45o 22.5o 0
10 |D〉 |D〉 22.5o 45o 22.5o 45o

11 |R〉 |D〉 22.5o 0 22.5o 45o

12 |H〉 |D〉 45o 0 22.5o 45o

13 |V〉 |D〉 0 0 22.5o 45o

14 |V〉 |L〉 0 0 22.5o 90o

15 |H〉 |L〉 45o 0 22.5o 90o

16 |R〉 |L〉 22.5o 0 22.5o 90o

Table 1

TABLE 1: The tomographic analysis states used in our experiments. The number of coincidence counts measured
in projections measurements provide a set of 16 data that allow the density matrix of the state of the two modes to
be estimated. We have used the notation |D〉 ≡ (|H〉 + |V〉) /

√
2, |L〉 ≡ (|H〉 + i|V〉) /

√
2 and |R〉 ≡ (|H〉 − i|V〉) /

√
2.

Note that, when the measurement are taken in the order given by the table, only one waveplate angle had to be
changed between each measurement.
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• To control the quantum system means to control all relevant errors…. 

• Pure state in dimension d:  2d -1 real parameters 
Estimation is not a convex problem…  
• Density matrix   d2 – 1  real parameters 
Fisher info matrix: ½(d2-1)(d2 –2) real parameters 
• CP maps: d2 (d2– 1)  real parameters 
Fisher info matrix for CP maps: ½d2 (d2– 1)(d4 - d2 -1) real parameters 
 
Quantum computation with 5 qbits: d = 25 = 32 
Quantum state: ~ 103 parameters 
Fisher info: ~ 106 parameters 
CP maps: ~ 106 parameters 

Fisher info of CP maps: ~ 1012 parameters  

6. Resource analysis for tomography, quantum computing and 
diagnostics with 5 q-bits 



7. Fisher information in quantum interferometry 

•  Considering the model of Holland, Burnett with the 
interferometer triggered by two n-Fock states,  investigate the 
resolution limit and discuss the strategy when optimal phase 
resolution can be achieved. 
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FIG. 2: Mach-Zehnder interferometer.
RehacekFig2.eps

Detected signal difference: q 
(n1 = n2 = r) 

Detected statistics  
(associated Legendre polynomials):  

Approxima*on	
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  “single”	
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