

Reconstruction of Quasiprobability Distributions Seminar

Thomas Kiesel and Werner Vogel

Institut für Physik Universität Rostock Germany

Contents

Introduction

Statistical error estimation

Nonclassicality filtering

Direct Sampling

Coherent states as classical states

Coherent states |\(\alpha\) resemble classical oscillations
 Classical mixture of coherent states:

$$\hat{\rho}_{\rm cl} = \sum_{i} p_{i} |\alpha_{i}\rangle \langle \alpha_{i} | \Rightarrow \int d^{2} \alpha P_{\rm cl}(\alpha) |\alpha\rangle \langle \alpha |$$

$P_{ m cl}(lpha)$: classical probability density

- General quantum state: $\hat{
 ho} = \int d^2 lpha P(lpha) |lpha
 angle \langle lpha |$
- Nonclassical state: $P(\alpha) \cong q$ uasi-probability, $P(\alpha) \neq P_{cl}(\alpha)$

Coherent states as classical states

Coherent states |\(\alpha\) resemble classical oscillations
 Classical mixture of coherent states:

$$\hat{\rho}_{\rm cl} = \sum_{i} p_{i} |\alpha_{i}\rangle \langle \alpha_{i} | \Rightarrow \int d^{2} \alpha P_{\rm cl}(\alpha) |\alpha\rangle \langle \alpha |$$

 $P_{\rm cl}(\alpha)$: classical probability density

- General quantum state: $\hat{
 ho} = \int d^2 lpha \, {\cal P}(lpha) |lpha
 angle \langle lpha |$
- Nonclassical state: $P(\alpha) \cong quasi-probability,$ $P(\alpha) \neq P_{cl}(\alpha)$

Consequences

- pure states are nonclassical if one requires quantum-mechanical superpositions of classical coherent states
- all statistical mixtures of coherent states are classical
- field correlation functions:

$$G_{m,n} = \langle \hat{E}^{(-)}(1) \dots \hat{E}^{(-)}(m) \hat{E}^{(+)}(n) \dots \hat{E}^{(+)}(1) \rangle$$

• can be measured in correlation experiments, e.g. HBT-setup:

$$G_{2,2} = \langle : \hat{I}(1) \hat{I}(2) : \rangle$$

• can be explained classically if and only if *P*-representation is nonnegative

Balanced homodyne tomography

- overlap of signal with local oscillator at beamsplitter
- measurement of photocurrents
- difference current proportional to quadrature x(φ)
- phase φ fixed by relative phase of local oscillator
- result: set of *N* quadrature points $\{x_j(\varphi)\}_{j=1}^N$
- quadrature distributions $p(x; \varphi)$

Quasiprobabilities and characteristic functions

Data from balanced homodyne measurement: $\{x_j(\varphi)\}_{i=1}^N$

Exercise: Statistical uncertainty estimation

From measured quadratures $\{x_j(\varphi)\}_{j=1}^N$ to the characteristic function $G(k;\varphi)$:

$$G(k;\varphi) = \int p(x;\varphi) e^{ikx} dx \approx \frac{1}{N} \sum_{j=1}^{N} e^{ikx_j(\varphi)}.$$

1. Estimate the mean square deviation of this quantity,

$$\sigma^{2}\{G(k;\varphi)\} = \left\langle \left| G(k;\varphi) \right|^{2} \right\rangle - \left| \left\langle G(k;\varphi) \right\rangle \right|^{2}.$$

What happens in the limits $k \to 0$ and $|k| \to \infty$?

2. From $G(k; \varphi)$ to the filtered characteristic function of the P function:

$$\Phi_{\Omega}(\beta) = e^{|\beta|^{2}/2} G(|\beta|; \arg(\beta) - \pi/2) \Omega_{w}(\beta).$$

Estimate the mean square deviation of $\Phi_{\Omega}(\beta)$ and discuss the behavior for large β .

3. Marginals of the filtered characteristic function of the *P* function:

$$p_{\Omega}(x;\varphi) = \int_{-\infty}^{\infty} e^{2ikx} e^{k^2/2} G(k;\varphi) \Omega_w(k) dk.$$

Estimate the mean square deviation of this quantity.

Example: Phase-diffused squeezed vacuum states

• Wigner function:

$$W(\alpha) = \int f(\varphi) \frac{1}{2\pi \sqrt{V_x V_p}} \exp\left\{-\frac{\operatorname{Re}^2(\alpha e^{-i\varphi})}{2V_x} - \frac{\operatorname{Im}^2(\alpha e^{-i\varphi})}{2V_p}\right\} d\varphi$$

• uncertainty relation: $V_{x}V_{p} \geq 1$

• Gaussian distribution $f(\varphi)$ with variance σ^2

• experiment¹ with
$$V_x = 0.36$$
,
 $V_p = 5.28$

- 10⁷ quadrature points from balanced homodyne detection
- state is squeezed for $\sigma < 22.2^{\circ}$

¹Kiesel et. al., PRA **79**, 150505 (2009)

Example: Phase-diffused squeezed vacuum states

• Wigner function:

$$W(\alpha) = \int f(\varphi) \frac{1}{2\pi \sqrt{V_x V_p}} \exp\left\{-\frac{\operatorname{Re}^2(\alpha e^{-i\varphi})}{2V_x} - \frac{\operatorname{Im}^2(\alpha e^{-i\varphi})}{2V_p}\right\} d\varphi$$

- uncertainty relation: $V_{\times}V_{p} \geq 1$
- Gaussian distribution $f(\varphi)$ with variance σ^2
- experiment¹ with $V_x = 0.36$, $V_p = 5.28$
- 10⁷ quadrature points from balanced homodyne detection
- state is squeezed for σ < 22.2°

¹Kiesel et. al., PRA **79**, 150505 (2009)

Example: Phase-diffused squeezed vacuum states

A state is nonclassical if²

 $\exists \beta \text{ with } |\Phi(\beta)| > 1$

- all these states are nonclassical
- blue shaded area represents one standard deviation
- high significance of nonclassical effect
- characteristic function Φ(β) not integrable
- P function is highly singular

²Vogel, PRL 84, 1849 (2000), Richter, Vogel, PRL 89, 283601 (2002)

Nonclassicality filters

- problem: *P* is singular $\Leftrightarrow \Phi$ is not integrable
- solution: filter characteristic function: $\Phi_{\Omega}(\beta) = \Phi(\beta)\Omega_{w}(\beta)$
- Requirements for the filter Ω_w(β) with width w:³
 - $\Phi_{\Omega}(\beta)$ is integrable \Rightarrow regularized function $P_{\Omega}(\alpha)$
 - $P_{\Omega,cl}(\alpha) \ge 0 \Rightarrow$ Fourier transform of $\Omega_w(\beta)$ is nonnegative
 - Original quantum state: $\lim_{w\to\infty} \Omega_w(\beta) = 1; \quad P_\Omega \Rightarrow P$
 - Suppression of statistical errors: $\Omega_w(\beta)e^{|\beta|^2/2}$ to be integrable

• Such filters exist for arbitrary quantum states!

³Kiesel and Vogel, PRA **82**, 032107 (2010)

Exercise: Autocorrelation filter

Let us define an autocorrelation filter $\Omega_w(\beta)$ as

$$\Omega_1(eta) = \mathcal{N} \int \omega(eta') \omega(eta + eta') d^2 eta', \quad \Omega_w(eta) = \Omega_1(eta/w),$$

with a normalization constant ${\cal N}$ chosen such that $\Omega_1(0)=1.$ Verify that

- 1. the Fourier transform $\int \Omega_1(\beta) e^{\alpha \beta^* \alpha^* \beta} d^2 \beta$ is nonnegative,
- 2. for $w \to \infty$, the filter approaches to one: $\lim_{w \to \infty} \Omega_w(\beta) = 1$,
- 3. if $\omega(\beta)$ is decreasing faster than any Gaussian function, in the sense that

$$\int \left|\omega(\beta)e^{a|\beta|^2}\right|^2 d^2\beta < \infty \qquad \forall a > 0,$$

then the same holds for $\Omega_1(\beta)$.

Hint: Show that if the latter inequality holds for some fixed a, then $|\Omega(\beta)| \leq C^2 e^{-a|\beta|^2/2}$ with some suitable constant *C*. The Cauchy-Schwarz-inequality may be helpful:

$$\left|\int f(\alpha)g(\alpha)d^2\alpha\right|^2 \leq \int |f(\alpha)|^2 d^2\alpha \int |g(\beta)|^2 d^2\beta$$

Example of onedimensional filters

Positive autocorrelation filter

Triangular filter

Nonclassicality quasiprobabilities

- Additional requirement: $\Omega_w(\beta) \neq 0 \Rightarrow$ Filter is invertible
- Full information on the quantum state
- Regularized $P_{\Omega} \Rightarrow$ nonclassicality quasiprobability: P_{Ω}

For any nonclassical quantum state, one can find negativities in $P_{\Omega}(\alpha)$ for sufficiently large filter width w.

Scheme for a universal nonclassicality test

- 1. reconstruct characteristic function $\Phi(\beta)$ from balanced homodyne detection
- 2. choose filter $\Omega_w(\beta)$ and calculate $\Phi_\Omega(\beta) = \Phi(\beta)\Omega_w(\beta)$
- 3. calculate nonclassicality quasiprobability $P_{\Omega}(\alpha)$ by Fourier transform
- 4. increase filter width until negativities appear

Example: Single-photon-added thermal states

Photon added on thermal background $(\overline{n}_{\mathrm{th}} pprox 0.5)^4$

Statistical significance of $P_{\Omega}(\alpha) < 0$: 15 standard deviations

⁴Kiesel, Vogel, Bellini, Zavatta, PRA **83**, 032119 (2011)

Exercise: Direct sampling of nonclassicality quasiprobabilities

The characteristic function $G(k; \varphi)$ is the Fourier transform of the quadrature distribution $p(x; \varphi)$,

$$G(k;\varphi)=\int_{-\infty}^{\infty}p(x;\varphi)e^{ikx}dx.$$

Furthermore, it is related to the nonclassicality quasiprobability $P_{\Omega}(\alpha)$ via

$$\begin{split} \Phi_{\Omega}(\beta) &= e^{|\beta|^2/2} G(|\beta|; \arg(\beta) - \pi/2) \Omega_{w}(\beta), \\ P_{\Omega}(\alpha) &= \frac{1}{\pi^2} \int d^2 \beta \, \Phi_{\Omega}(\beta) e^{\alpha \beta^* - \alpha^* \beta}. \end{split}$$

Let us now examine an expression for $P_{\Omega}(\alpha)$ in the form

$$P_{\Omega}(\alpha) = \frac{1}{\pi} \int_{0}^{\pi} d\varphi \int_{-\infty}^{\infty} dx \, p(x;\varphi) f_{\Omega}(x,\varphi;\alpha,w). \tag{1}$$

- 1. Find a suitable function $f_{\Omega}(x; \varphi; \alpha, w)$.
- 2. What is the interpretation of Eq. (1)? How can it be practically implemented to experimental data? How can one estimate the resulting statistical error?

Example: Pattern function $f_{\Omega}(x, \varphi; \alpha, w)$

Pattern function for phase-independent filter:

$$f_{\Omega}(x,\varphi;\alpha,w) = \frac{1}{\pi} \int_{-\infty}^{\infty} db \, |b| e^{ib(x+2|\alpha|\sin(\arg\alpha-\varphi-\pi/2))} e^{b^2/2} \Omega_w(b)$$

Autocorrelation filter:

$$\Omega_1(eta) = \mathcal{N}\int \omega(eta') \omega(eta{+}eta') d^2eta'$$

- here: $\omega(\beta) = \exp\{-|\beta|^4\}$
- the larger the width, the larger the oscillations

Reconstruction of a quasiprobability

Pattern function $f_{\Omega}(x, \varphi; \alpha, w)$:

 $P_{\Omega}(\alpha) = \langle f_{\Omega}(x,\varphi;\alpha,w) \rangle_{x,\varphi}$

Estimate $P_{\Omega}(\alpha)$ as empirical mean of pattern function

Reconstruction of a quasiprobability

Pattern function $f_{\Omega}(x, \varphi; \alpha, w)$:

 $P_{\Omega}(\alpha) = \langle f_{\Omega}(x,\varphi;\alpha,w) \rangle_{x,\varphi}$

Estimate $P_{\Omega}(\alpha)$ as empirical mean of pattern function

 $\begin{array}{c} x_1(\varphi_1) \\ \vdots \\ x_N(\varphi_N) \end{array}$

Reconstruction of a quasiprobability

Pattern function $f_{\Omega}(x, \varphi; \alpha, w)$:

 $P_{\Omega}(\alpha) = \langle f_{\Omega}(x,\varphi;\alpha,w) \rangle_{x,\varphi}$

Estimate $P_{\Omega}(\alpha)$ as empirical mean of pattern function

$$\begin{array}{rcl} x_1(\varphi_1) & \to & f_1 = f_{\Omega}(x_1, \varphi_1; \alpha, w) \\ \vdots & & \vdots \\ x_N(\varphi_N) & \to & f_N = f_{\Omega}(x_N, \varphi_N; \alpha, w) \end{array}$$

Reconstruction of a quasiprobability

Pattern function $f_{\Omega}(x, \varphi; \alpha, w)$:

 $P_{\Omega}(\alpha) = \langle f_{\Omega}(x,\varphi;\alpha,w) \rangle_{x,\varphi}$

Estimate $P_{\Omega}(\alpha)$ as empirical mean of pattern function

$$\begin{array}{rcl} x_1(\varphi_1) & \to & f_1 = f_{\Omega}(x_1,\varphi_1;\alpha,w) \\ \vdots & & \vdots \\ x_N(\varphi_N) & \to & f_N = f_{\Omega}(x_N,\varphi_N;\alpha,w) \end{array}$$

Mean:
$$P_{\Omega}(\alpha) = \frac{1}{N} \sum_{i} f_{\Omega}(x_{i}, \varphi_{i}; \alpha, w)$$

Variance: $\sigma^{2} \{ P_{\Omega} \} = \sigma^{2} \{ f_{\Omega}(x_{i}, \varphi_{i}; \alpha, w) \}$

Experimental result for squeezed state⁵

- squeezed vacuum with $V_x = 0.36 V_{vac}$ and $V_p = 5.28 V_{vac}$
- measurement: 10⁵ quadratures for each of 21 phases
- significance of negativity optimized for *w* = 1.3
- quasiprobability shows clearly negativities
- these are not introduced by the filter
- standard deviation is less than linewidth
- signatures of nonclassicality

Figure: Significance of negativity in dependence of filter width w

⁵Kiesel, Vogel, Hage, Schnabel, arXiv:1103.2032 [quant-ph], PRL (in press).

Experimental result for squeezed state⁵

- squeezed vacuum with $V_x = 0.36 V_{vac}$ and $V_p = 5.28 V_{vac}$
- measurement: 10⁵ quadratures for each of 21 phases
- significance of negativity optimized for *w* = 1.3
- quasiprobability shows clearly negativities
- these are not introduced by the filter
- standard deviation is less than linewidth
- signatures of nonclassicality

⁵Kiesel, Vogel, Hage, Schnabel, arXiv:1103.2032 [quant-ph], PRL (in press).

Experimental result for squeezed state⁵

- squeezed vacuum with $V_x = 0.36 V_{vac}$ and $V_p = 5.28 V_{vac}$
- measurement: 10⁵ quadratures for each of 21 phases
- significance of negativity optimized for w = 1.3
- quasiprobability shows clearly negativities
- these are not introduced by the filter
- standard deviation is less than linewidth
- signatures of nonclassicality

Figure: Nonclassicality quasiprobability

⁵Kiesel, Vogel, Hage, Schnabel, arXiv:1103.2032 [quant-ph], PRL (in press).

Summary

- *P* representation: $\hat{\rho} = \int d^2 \alpha P(\alpha) |\alpha\rangle \langle \alpha |$
- Nonclassical states do not have a nonnegative *P* function
- Problem: $P(\alpha)$ often highly singular
- Regularization: $P(\alpha) \Rightarrow P_{\Omega}(\alpha)$
- Negativities indicate nonclassicality of the state
- Applies to all quantum states; suppression of experimental noise
- Direct sampling from homodyne quadrature data possible

Thank you for your attention.